
Investigating Torricelli’s law

using a pressure sensor

Jamie Lee Somers, 19330931

B.Sc in Applied Physics.

Wednesday 14th April, 2021



1 Introduction:

In 1643, after succeeding Galileo Galilei as professor of mathematics at the Florentine Academy[1].

Evangelista Torricelli, among other experiments, discovered a law now known as Torricelli’s Law.

The crux of this law is that water jets our of a small hole at the bottom of a container filled to

a particular height h proportional to the speed it would be free falling following the equation

v =
√

2gh where h is the aforementioned height of the liquid in the container. This jetting is

known as the efflux speed.

Usually when people discuss Torricelli’s Law they are referring strictly to water flowing through

a small hole in a container, however Torricelli’s law is not necessarily limited to just water. When

attempting to verify Torricelli’s law the only limitations for the law is that there is minimal air

resistance, the liquids viscosity is extremely low and the hole at the bottom of the container is

far smaller proportional to the hole opening at the top of the container[2].

In this experiment more sophisticated equipment than Evangelista Torricelli would have had

available to him at the time of discovery was used, in an effort to verify or disprove Torricelli’s

law. Discussed below is the findings of four separate liquids, whether or not they fall within the

limitations set out by Torricelli’s law and if the results line up with what Torricelli’s law predicts.

Using an Arduino, a pressure sensor and an ultrasonic sensor, large amounts of data points

can be obtained which measure the height of the liquid in a container at any given time. Liquids

which behave according to Torricelli’s law when graphed will display as a quadratic equation

where the decrease in height gradually becomes slower and slower until there is a long tail lead-

ing to a height of zero. This is because the jet or the velocity of the water leaving the hole will

decrease as the height of water above the hole decreases.

Shown below is two graphs, one graph represents height vs time for water which gives an ideal

representation of Torricelli’s law on a graph. The second graph was obtained using honey. Honey

is an incredibly viscous liquid which as explained above, does not obey Torricelli’s law.

Figure 1: Height versus time (water) 1 Figure 2: Height versus time (honey)

1



2 Project Objectives:

• Set up Arduino system which can measure the change in liquid head over time.

• Import the Arduino code into Python using PyFirmata to take advantage of modules such

as numpy and matplotlib

• Verify that Torricelli’s law holds true for water.

• Explore Torricelli’s law using alternate liquids and viscosities.

• Build a GUI which improves the systems real world usability for applications such as

automatic drainage mentioned in the project proposal.

• Find the quadratic equation for each liquid using the least squared fitting python code

introduced previously.

3 Experimental Setup and Methods:

The general experimental setup used to investigate Torricelli’s law involves a container with

two holes, one large hole at the top to allow liquid to be stored inside and one smaller hole at

the base of the container which is filled with a tube that has a stopper which can prevent the

draining of liquid.

There also needs to be some method of measuring the height of the liquid still in the con-

tainer. An Arduino was utilised for this purpose as it is modular and has many different types

of sensors which could be added to the system. The two sensors involves were the MPX5010GP

Pressure sensor and the HC-SR04 ultrasonic sensor.

The pressure sensor can calculate the height of the liquid by taking the pressure in the room

and comparing it to the pressure where the sensor is located below the surface of the water.

This difference in pressures generates a voltage which the Arduino can print to the screen, using

a formula involving the voltage reading (V), the initial voltage when the container is drained

(V0) and a beta value which converts the voltage reading to a comprehensible height in cm (β):

h =
V − V 0

β
(1)

When the container is fully drained the voltage reading isn’t necessarily zero. We can see from

the equation that our V0 value depends on whatever the voltage reading obtained is whenever

the h value is 0. The β value is found by dividing the voltage difference by whatever the mea-

sured height of the liquid is at a given time.

For the purposes of this experiment, the values were β = 0.045 and V 0 = 0.22

2



The ultrasonic sensor determines the height of the liquid using sonar with high accuracy. The

sensor emits an ultrasonic wave which travels to the surface of the water, once it hits the surface

the wave bounces back as an ’echo’. The distance is calculated based on the amount of time it

takes the wave to hit the surface and the speed of sound.

The height of the liquid in the container h, is found by subtracting the distance from the

sensor to the surface of the water when the container is full from the reading. This way when

the container is full, the reading is zero, and as the water starts to drain the distance being

shown is how much of the water has been drained so far.

To calculate the distance using an ultrasonic sensor an external guide was used which had

a comprehensive explanation for the technique involved[3]. The calculation was the speed of

sound in cm/µs, (0.034) divided by two with the distance between the sensor and the surface of

the water (2.5 cm) subtracted as a function of time.

s =
0.034 · t

2
− 2.5 (2)

As the time taken for the sound wave to reach the sensor increases, the top part of the fraction

gets larger and the distance value grows bigger which is the height the H value has lost since

the measurements began.

Some minor adjustments were made to the drain tube, the para-film was switched out in favour

of hot glue which as well as reducing the number of leaks occurring from the container also

increased the rigidity of the drain tube itself and was able stay perfectly horizontal during the

readings without the need of a support.

Figure 3: Apparatus with para-film Figure 4: Apparatus with hot glue
& unsupported drain pipe & supported drain tube

3



4 Data Presentation and Analysis

Water:

The experiment was carried out using water three times, all three times the data remained

consistent with the A, B and C values for water being A = 8.86 × 10−4 ± 8.68 × 10−7, B =

−1.55×10−1±8.17×10−5 and C = 6.46±1.6×10−3. This produces a quadratic which displays

the exact characteristics we would expect to see from a liquid obeying Torricelli’s law (Fig. 5).

We also measured the efflux value for water which showed an initial flow rate of 118 cm/s−1

which decreased linearly over time (Fig. 6). This is exactly the behaviour we expect to see.

Figure 5: Height versus time (water) Figure 6: Efflux speed versus time (water)

Washing-up liquid:

The results for washing-up liquid were very similar to the values seen for water. The A,B

and C values were A = 9.41 × 10−4 ± 7.78 × 10−7, B = −1.59 × 10−1 ± 7.37 × 10−5 and C =

6.37± 1.46× 10−3 The efflux value decreased in a linear pattern, however the washing-up liquid

took less time to drain than the water.

Figure 7: Height versus time (washing-up) Figure 8: Efflux speed versus time (washingup)

4



Carbonated Soda:

This is the most interesting of the liquids tested. In the first run the carbonated liquid behaved

nothing like a typical liquid obeying Torricelli’s Law but by the third run it was obeying it

perfectly, this is reflected in both the A,B and C values for each run as well as the height vs

time graphs (Figure 9, 10 and 11)

Run 1: A = 2.76×10−4±2.01×10−6, B = −5.99×10−2±1.98×10−4 and C = 6.28±4.15×10−3

Run 2: A = 6.04×10−4±1.57×10−6, B = −1.09×10−1±1.48×10−4 and C = 6.39±2.80×10−3

Run 3: A = 7.54×10−4±1.39×10−6, B = −1.33×10−1±1.21×10−4 and C = 6.46±1.88×10−3

Figure 9: h vs t (Run 1) Figure 10: h vs t (Run 2) Figure 11: h vs t (Run 3)

It appears as though something has changed during each run which somehow makes the liquid

more accurate to what Torricelli’s Law predicts.

Honey:

Honey is an extremely viscous liquid, this means that unlike other liquids honey has a high

resistance to molecules sliding over each other and flowing like a typical liquid. This is due to

the fact that honey is chemically made up of sugars such as glucose and fructose which are bonded

using Hydrogen bonds[4]. The results for honey are as follows: A = 1.90× 10−5 ± 7.99× 10−7,

B = −4.70× 10−2 ± 7.61× 10−5 and C = 6.01± 1.51× 10−3

Figure 12: Height versus time (honey) Figure 13: Efflux speed versus time (honey)

5



5 Discussion of Results

Thanks to equation 6 in the ”Investigating Torricelli law PhysEd 2018” paper[5], it was possible

to work out the values for A, B and C mathematically and compare the answer to the answers

obtained using the least squared fitting method. All three runs of the water and washing-up

liquid tests fell within the uncertainty indicated in the results section, however only the third

run of the carbonated soda run fell within its calculated uncertainty and none of the honey runs

matched up with their calculated A,B and C values.

A possible hypothesis as to why the washing-up liquid water drains faster than regular wa-

ter is that the suds in the mixture help spread out the water molecules. This gives the water

molecules the opposite effect of honey and its hydrogen bonds, reducing the resistance to the

molecules sliding over each other.

A possible hypothesis as to why the carbonated soda behaved more and more inline with Tor-

ricelli’s Law as the experiment was ran more times is that, carbonated soda is an example of

a homogeneous mixture of liquid and gas (carbon dioxide). Once the soda can is opened the

carbon dioxide begins to escape and the soda becomes increasingly ”flat”. Torricelli’s Law is

specifically stated as a law that applies to non-viscous liquids, it is assumed that a liquid and

gas mixture will not obey Torricelli’s law until the gas has been extracted from the liquid.

According to Figure 13, the efflux velocity for Honey was extremely high compared to the

other liquids tested. Its important to remember that Torricelli’s law is strictly limited to de-

scribing non-viscous liquids, this graph is a perfect example of why Torricelli’s law does not

effectively predict the characteristics of viscous liquids. The method of calculating the efflux

velocity is by assuming that a liquid pouring out of a container with a higher ’h’ value is going

to flow faster than a liquid with a smaller ’h’ value. This was not true in the case of honey, the

reason why the ’h’ value for honey was so high and remained that way was because they honey

was actually flowing extremely slowly and didn’t even drain completely in the 90 seconds allo-

cated for measurements. It is then assumed that this graphs velocity predictions are completely

inaccurate.

6 Conclusions and Potential Improvements

Torricelli’s law held true for Water:

A = 8.86 × 10−4 ± 8.68 × 10−7, B = −1.55 × 10−1 ± 8.17 × 10−5 and C = 6.46 ± 1.6 × 10−3,

Washing-up liquid:

A = 9.41 × 10−4 ± 7.78 × 10−7, B = −1.59 × 10−1 ± 7.37 × 10−5 and C = 6.37 ± 1.46 × 10−3

and Run 3 of Carbonated Soda:

A = 7.54× 10−4 ± 1.39× 10−6, B = −1.33× 10−1 ± 1.21× 10−4 and C = 6.46± 1.88× 10−3.

All other results fall outside of the parameters of what Torricelli’s Law predicts, therefore,

Torricelli’s Law remains verifiably true.

6



Potential improvements which could be made to the experiment in future:

Now knowing that certain liquids such as Carbonated Soda have a time constraint around notic-

ing changes in its behaviour, I would have worked faster to do more runs in a shorter amount of

time. This would either back up or falsify the hypothesis that the liquids strange behaviour is

based on its chemical composition. Once the effect was observed more cans of carbonated soda

were used directly after being opened and once they had gone flat to test the hypothesis. These

measurements remained consistent with the ones included in this report.

Placing the entire apparatus, particularly the drain tube stopper on a shock absorbent mount

would help reduce the unreliably nature of the ultrasonic sensor. During multiple test runs,

removing the drain tube stopper with anything but the lightest touch caused the liquid inside

the container to oscillate at the surface which effected the sensors ability to accurately detect

the height of the liquid. This irregularity in the readings diminishes as the water settles back

to equilibrium at the surface of the container. This effect was minimised by placing two towels

below the container and also coding in more time to release the drain tube before measurements

are recorded to ensure there was no need to act quickly.

Ideally a method of producing Efflux velocity graphs would have been included within the

GUI, however time constraints meant that this was no longer a possibility. In future the GUI

should be designed to produce all of the plots necessary for the project report without the need

for external code. Instead an external python programme was made with the explicit intent to

produce efflux plots and save them to a file.

References:

[1] Britannica, The Editors of Encyclopaedia. ”Evangelista Torricelli”.Encyclopedia Britannica,

21 Oct. 2020, https://www.britannica.com/biography/Evangelista-Torricelli

[2] Princeton University, Johann Otto. ”Torricelli’s Law for Large Holes”. 15 Sep. 2018,

https://www.physics.princeton.edu/˜mcdonald/examples/leaky_tank.pdf

[3] HowToMechatronics, Dejan. ”Ultrasonic Sensor HC-SR04 and Arduino Tut.”.26 Jul. 2015,

https://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/

[4] Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, Ed Vitz, John W., and Adam Hahn.

“Viscosity.” Chemical Education Digital Library, 5 Nov. 2020, https://chem.libretexts.

org/@go/page/49661.

[5] Atkin, Keith. ”Investigating the Torricelli law using a pressure sensor with the Arduino

and MakerPlot.” Physics Education, Aug. 2018, https://doi.org/10.1088/1361-6552/aad680

7

https://www.britannica.com/biography/Evangelista-Torricelli
https://www.physics.princeton.edu/~mcdonald/examples/leaky_tank.pdf
https://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/
https://chem.libretexts.org/@go/page/49661
https://chem.libretexts.org/@go/page/49661


Appendix:

Torricelli’s Law, Using Arduino pressure sensor, Python code and PyFirmata

# -*- coding: utf-8 -*-

"""

Created on Sat Mar 27 19:24:49 2021

@author: JamieSomers

References:

General UI Template from: https://pythonprogramming.net/change-show-new-frame-

tkinter/

Creating a file reader button: https://stackoverflow.com/questions/16798937/creating

-a-browse-button-with-tkinter

How to open a file based on filepath: https://stackoverflow.com/questions/41443600/

get-name-attribute-of-io-bufferedreader

How to open file explorer: #https://stackoverflow.com/questions/281888/open-explorer

-on-a-file

Positioning multiple buttons: #https://stackoverflow.com/questions/51631105/how-to-

position-several-widgets-side-by-side-on-one-line-with-tkinter

Text box info: https://www.geeksforgeeks.org/python-tkinter-text-widget/

3D plot: https://matplotlib.org/2.0.2/mpl_toolkits/mplot3d/tutorial.html

PyFirmata: https://pypi.org/project/pyFirmata/

Change variable value based on user input: https://stackoverflow.com/questions

/24911805/change-the-value-of-a-variable-with-a-button-tkinter

"""

import numpy as np #Imports the library known as numpy and changes its name to np

import matplotlib #Imports matplotlib

matplotlib.use("TkAgg") #Allows matplotlib to be used inside tkinter

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,

NavigationToolbar2Tk #Allows for graphs to be displayed on the UI

from matplotlib.figure import Figure #Allows matplotlib to use figures

import matplotlib.pyplot as plt #Imports MatPlotLib which is a comprehensive

library for creating static, animated and interactive visualizations in Python

like creating plots, and changes its name to plt

from matplotlib import pyplot

from mpl_toolkits.mplot3d import Axes3D

import scipy as sp #Imports scipy as sp

from scipy import optimize #allows us to use sp.optimize which is important for the

least squared fitting window

import tkinter as tk #Imports a UI building tool called tkinter as tk

from tkinter import ttk #allows us to use tk themed widgets

from tkinter import * #Imports every exposed object in Tkinter into namespace

from tkinter.ttk import * #Allows us to import things like labels and buttons

from tkinter import filedialog #Allows us to open the file explorer window on a

windows machine inside our UI



import csv #Used to create and edit our .csv files

import time #Allows us to tell the code to sleep for a second (required to read

input values from Arduino)

import ctypes, os #Allows us to use the internal QPC clock for our milis() function

import threading #Threading functions is required for this code as the UI will

become unresponsive when gathering measurements otherwise

import subprocess #Subprocess allows us to open the file explorer window on a

windows machine and locate a specific file

try:

from pyfirmata import Arduino, util #Try using PyFirmata to import Arduino

except:

import pip

pip.main([’install’,’pyfirmata’]) #If PyFirmata is not installed, install it

from pyfirmata import Arduino, util #imports Arduino and util from pyfirmata

LARGE_FONT= ("Verdana", 12) #This is the font style and size that is used within the

UI

settings = {} #This is a dictionary that stores the settings menu until it is

written to a file

analysis_data = {} #This is a dictionary that stores A,B,C guesses for least squared

fitting until it is written to a file

# Mahalanobis distance variables

-------------------------------------------------------------------------------------------------------------------------------------------

distances = [] #This list stores the mahalanobis distances so I can determine which

is lowest

Vector_database = np.array([[0.0008864714983003059,

-0.15494893946363458,6.464166964037915],[0.0008705378877068795,

-0.15518994683160206,6.721225367081532],#two water vectors

[0.0009187352876899168,

-0.15955350486484704,6.537786655059696],[0.0009413558375836622,

-0.1598663366460094,6.374893163429263],#two washing

-up liquid vectors

[0.0002780466440477776,

-0.05991894711853976,6.280040401911863],[0.0006035277020619921,

-0.10905845490923652,6.385419084924521],#two

carbonated vectors

[1.8960545786506496e-5,

-0.04700306935841803,6.011695946893561],[0.0004910783655506937,

-0.1137749459745347,6.610190819819566]])#two honey

vectors

Water_database = Vector_database[0:2] #Slices the water vectors from the vector

database



Washingup_database = Vector_database[2:4] #Slices the washingup liquid vectors from

the vector database

Carbonated_database = Vector_database[4:6] #Slices the carbonated soda vectors from

the vector database

Honey_database = Vector_database[6:8] #Slices the honey vectors from the vector

database

Covariance_matrix_water = np.array([[((Vector_database[0][0]-(Vector_database[0][0]+

Vector_database[1][0])/2)**2+(Vector_database[1][0]-(Vector_database[0][0]+

Vector_database[1][0])/2)**2), (Vector_database[0][0]-((Vector_database[0][0]+

Vector_database[1][0])/2))*(Vector_database[0][1] - ((Vector_database[0][1]+

Vector_database[1][1])/2)) + (Vector_database[1][0]-((Vector_database[0][0]+

Vector_database[1][0])/2))*(Vector_database[1][1] - ((Vector_database[0][1]+

Vector_database[1][1])/2)), (Vector_database[0][0]-((Vector_database[0][0]+

Vector_database[1][0])/2))*(Vector_database[0][2] - ((Vector_database[0][2]+

Vector_database[1][2])/2)) + (Vector_database[1][0]-((Vector_database[0][0]+

Vector_database[1][0])/2))*(Vector_database[1][2] - ((Vector_database[0][2]+

Vector_database[1][2])/2))],

[(Vector_database[0][0]-((Vector_database[0][0]+

Vector_database[1][0])/2))*(Vector_database

[0][1] - ((Vector_database[0][1]+

Vector_database[1][1])/2)) + (

Vector_database[1][0]-((Vector_database

[0][0]+Vector_database[1][0])/2))*(

Vector_database[1][1] - ((Vector_database

[0][1]+Vector_database[1][1])/2)), ((

Vector_database[0][1]-(Vector_database

[0][1]+Vector_database[1][1])/2)**2+(

Vector_database[1][1]-(Vector_database

[0][1]+Vector_database[1][1])/2)**2), (

Vector_database[0][1]-((Vector_database

[0][1]+Vector_database[1][1])/2))*(

Vector_database[0][2] - ((Vector_database

[0][2]+Vector_database[1][2])/2)) + (

Vector_database[1][1]-((Vector_database

[0][1]+Vector_database[1][1])/2))*(

Vector_database[1][2] - ((Vector_database

[0][2]+Vector_database[1][2])/2))],

[(Vector_database[0][0]-((Vector_database[0][0]+

Vector_database[1][0])/2))*(Vector_database

[0][2] - ((Vector_database[0][2]+

Vector_database[1][2])/2)) + (

Vector_database[1][0]-((Vector_database

[0][0]+Vector_database[1][0])/2))*(

Vector_database[1][2] - ((Vector_database

[0][2]+Vector_database[1][2])/2)), (

Vector_database[0][1]-((Vector_database

[0][1]+Vector_database[1][1])/2))*(

Vector_database[0][2] - ((Vector_database

[0][2]+Vector_database[1][2])/2)) + (

Vector_database[1][1]-((Vector_database



[0][1]+Vector_database[1][1])/2))*(

Vector_database[1][2] - ((Vector_database

[0][2]+Vector_database[1][2])/2)), ((

Vector_database[0][2]-(Vector_database

[0][2]+Vector_database[1][2])/2)**2+(

Vector_database[1][2]-(Vector_database

[0][2]+Vector_database[1][2])/2)**2) ]])

#Inverse covariance matrix is required for the Mahalanobis distance equation

iv_water = (Covariance_matrix_water)**(-1)

Covariance_matrix_washingup = np.array([[((Vector_database[2][0]-(Vector_database

[2][0]+Vector_database[3][0])/2)**2+(Vector_database[3][0]-(Vector_database

[2][0]+Vector_database[3][0])/2)**2), (Vector_database[2][0]-((Vector_database

[2][0]+Vector_database[3][0])/2))*(Vector_database[2][1] - ((Vector_database

[2][1]+Vector_database[3][1])/2)) + (Vector_database[3][0]-((Vector_database

[2][0]+Vector_database[3][0])/2))*(Vector_database[3][1] - ((Vector_database

[2][1]+Vector_database[3][1])/2)), (Vector_database[2][0]-((Vector_database

[2][0]+Vector_database[3][0])/2))*(Vector_database[2][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2)) + (Vector_database[3][0]-((Vector_database

[2][0]+Vector_database[3][0])/2))*(Vector_database[3][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2))],

[(Vector_database[2][0]-((Vector_database[2][0]+

Vector_database[3][0])/2))*(Vector_database

[2][1] - ((Vector_database[2][1]+

Vector_database[3][1])/2)) + (

Vector_database[3][0]-((Vector_database

[2][0]+Vector_database[3][0])/2))*(

Vector_database[3][1] - ((Vector_database

[2][1]+Vector_database[3][1])/2)), ((

Vector_database[2][1]-(Vector_database

[2][1]+Vector_database[3][1])/2)**2+(

Vector_database[3][1]-(Vector_database

[2][1]+Vector_database[3][1])/2)**2), (

Vector_database[2][1]-((Vector_database

[2][1]+Vector_database[3][1])/2))*(

Vector_database[2][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2)) + (

Vector_database[3][1]-((Vector_database

[2][1]+Vector_database[3][1])/2))*(

Vector_database[3][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2))],

[(Vector_database[2][0]-((Vector_database[2][0]+

Vector_database[3][0])/2))*(Vector_database

[2][2] - ((Vector_database[2][2]+

Vector_database[3][2])/2)) + (

Vector_database[3][0]-((Vector_database

[2][0]+Vector_database[3][0])/2))*(

Vector_database[3][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2)), (

Vector_database[2][1]-((Vector_database



[2][1]+Vector_database[3][1])/2))*(

Vector_database[2][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2)) + (

Vector_database[3][1]-((Vector_database

[2][1]+Vector_database[3][1])/2))*(

Vector_database[3][2] - ((Vector_database

[2][2]+Vector_database[3][2])/2)), ((

Vector_database[2][2]-(Vector_database

[2][2]+Vector_database[3][2])/2)**2+(

Vector_database[3][2]-(Vector_database

[2][2]+Vector_database[3][2])/2)**2) ]])

iv_washingup = (Covariance_matrix_washingup)**(-1)

Covariance_matrix_carbonated = np.array([[((Vector_database[4][0]-(Vector_database

[4][0]+Vector_database[5][0])/2)**2+(Vector_database[5][0]-(Vector_database

[4][0]+Vector_database[5][0])/2)**2), (Vector_database[4][0]-((Vector_database

[4][0]+Vector_database[5][0])/2))*(Vector_database[4][1] - ((Vector_database

[4][1]+Vector_database[5][1])/2)) + (Vector_database[5][0]-((Vector_database

[4][0]+Vector_database[5][0])/2))*(Vector_database[5][1] - ((Vector_database

[4][1]+Vector_database[5][1])/2)), (Vector_database[4][0]-((Vector_database

[4][0]+Vector_database[5][0])/2))*(Vector_database[4][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2)) + (Vector_database[5][0]-((Vector_database

[4][0]+Vector_database[5][0])/2))*(Vector_database[5][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2))],

[(Vector_database[4][0]-((Vector_database[4][0]+

Vector_database[5][0])/2))*(Vector_database

[4][1] - ((Vector_database[4][1]+

Vector_database[5][1])/2)) + (

Vector_database[5][0]-((Vector_database

[4][0]+Vector_database[5][0])/2))*(

Vector_database[5][1] - ((Vector_database

[4][1]+Vector_database[5][1])/2)), ((

Vector_database[4][1]-(Vector_database

[4][1]+Vector_database[5][1])/2)**2+(

Vector_database[5][1]-(Vector_database

[4][1]+Vector_database[5][1])/2)**2), (

Vector_database[4][1]-((Vector_database

[4][1]+Vector_database[5][1])/2))*(

Vector_database[4][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2)) + (

Vector_database[5][1]-((Vector_database

[4][1]+Vector_database[5][1])/2))*(

Vector_database[5][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2))],

[(Vector_database[4][0]-((Vector_database[4][0]+

Vector_database[5][0])/2))*(Vector_database

[4][2] - ((Vector_database[4][2]+

Vector_database[5][2])/2)) + (

Vector_database[5][0]-((Vector_database

[4][0]+Vector_database[5][0])/2))*(



Vector_database[5][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2)), (

Vector_database[4][1]-((Vector_database

[4][1]+Vector_database[5][1])/2))*(

Vector_database[4][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2)) + (

Vector_database[5][1]-((Vector_database

[4][1]+Vector_database[5][1])/2))*(

Vector_database[5][2] - ((Vector_database

[4][2]+Vector_database[5][2])/2)), ((

Vector_database[4][2]-(Vector_database

[4][2]+Vector_database[5][2])/2)**2+(

Vector_database[5][2]-(Vector_database

[4][2]+Vector_database[5][2])/2)**2) ]])

iv_carbonated = (Covariance_matrix_carbonated)**(-1)

Covariance_matrix_honey = np.array([[((Vector_database[6][0]-(Vector_database[6][0]+

Vector_database[7][0])/2)**2+(Vector_database[7][0]-(Vector_database[6][0]+

Vector_database[7][0])/2)**2), (Vector_database[6][0]-((Vector_database[6][0]+

Vector_database[7][0])/2))*(Vector_database[6][1] - ((Vector_database[6][1]+

Vector_database[7][1])/2)) + (Vector_database[7][0]-((Vector_database[6][0]+

Vector_database[7][0])/2))*(Vector_database[7][1] - ((Vector_database[6][1]+

Vector_database[7][1])/2)), (Vector_database[6][0]-((Vector_database[6][0]+

Vector_database[7][0])/2))*(Vector_database[6][2] - ((Vector_database[6][2]+

Vector_database[7][2])/2)) + (Vector_database[7][0]-((Vector_database[6][0]+

Vector_database[7][0])/2))*(Vector_database[7][2] - ((Vector_database[6][2]+

Vector_database[7][2])/2))],

[(Vector_database[6][0]-((Vector_database[6][0]+

Vector_database[7][0])/2))*(Vector_database

[6][1] - ((Vector_database[6][1]+

Vector_database[7][1])/2)) + (

Vector_database[7][0]-((Vector_database

[6][0]+Vector_database[7][0])/2))*(

Vector_database[7][1] - ((Vector_database

[6][1]+Vector_database[7][1])/2)), ((

Vector_database[6][1]-(Vector_database

[6][1]+Vector_database[7][1])/2)**2+(

Vector_database[7][1]-(Vector_database

[6][1]+Vector_database[7][1])/2)**2), (

Vector_database[6][1]-((Vector_database

[6][1]+Vector_database[7][1])/2))*(

Vector_database[6][2] - ((Vector_database

[6][2]+Vector_database[7][2])/2)) + (

Vector_database[7][1]-((Vector_database

[6][1]+Vector_database[7][1])/2))*(

Vector_database[7][2] - ((Vector_database

[6][2]+Vector_database[7][2])/2))],

[(Vector_database[6][0]-((Vector_database[6][0]+

Vector_database[7][0])/2))*(Vector_database

[6][2] - ((Vector_database[6][2]+



Vector_database[7][2])/2)) + (

Vector_database[7][0]-((Vector_database

[6][0]+Vector_database[7][0])/2))*(

Vector_database[7][2] - ((Vector_database

[6][2]+Vector_database[7][2])/2)), (

Vector_database[6][1]-((Vector_database

[6][1]+Vector_database[7][1])/2))*(

Vector_database[6][2] - ((Vector_database

[6][2]+Vector_database[7][2])/2)) + (

Vector_database[7][1]-((Vector_database

[6][1]+Vector_database[7][1])/2))*(

Vector_database[7][2] - ((Vector_database

[6][2]+Vector_database[7][2])/2)), ((

Vector_database[6][2]-(Vector_database

[6][2]+Vector_database[7][2])/2)**2+(

Vector_database[7][2]-(Vector_database

[6][2]+Vector_database[7][2])/2)**2) ]])

iv_honey = (Covariance_matrix_honey)**(-1)

#The mean of the vector values is required for the Mahalanobis distance equation

Mean_matrix_water = np.array([[((Vector_database[0][0]+Vector_database[1][0])/2),((

Vector_database[0][1]+Vector_database[1][1])/2),((Vector_database[0][2]+

Vector_database[1][2])/2)]])

Mean_matrix_washingup = np.array([[((Vector_database[2][0]+Vector_database[3][0])/2)

,((Vector_database[2][1]+Vector_database[3][1])/2),((Vector_database[2][2]+

Vector_database[3][2])/2)]])

Mean_matrix_carbonated = np.array([[((Vector_database[4][0]+Vector_database[5][0])

/2),((Vector_database[4][1]+Vector_database[5][1])/2),((Vector_database[4][2]+

Vector_database[5][2])/2)]])

Mean_matrix_honey = np.array([[((Vector_database[6][0]+Vector_database[7][0])/2),((

Vector_database[6][1]+Vector_database[7][1])/2),((Vector_database[6][2]+

Vector_database[7][2])/2)]])

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------

# Reads in previously saved settings from a settings text file

----------------------------------------------------------------------------------------------------

with open(’settings.txt’) as fileinput:

line0 = fileinput.readlines()

settings[’COM’] = line0[0].strip()

settings[’beta’] = line0[1].strip()

settings[’V0’] = line0[2].strip()

settings[’H’] = line0[3].strip()

settings[’G’] = line0[4].strip()



#Reads in previously saved guess values for least squared fitting

--------------------------------------------------------------------------------------------------

with open(’analysis_data.txt’) as fileinput:

line0 = fileinput.readlines()

analysis_data[’A0’] = line0[0].strip()

analysis_data[’B0’] = line0[1].strip()

analysis_data[’C0’] = line0[2].strip()

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------

# Main window of UI

-----------------------------------------------------------------------------------------------------------------------------------------------

class GUI(tk.Tk):

def __init__(self, *args, **kwargs): #defines the variable self to mean the main

window of UI

----------------------------------------------------------------

tk.Tk.__init__(self, *args, **kwargs)

tk.Tk.iconbitmap(self, default="icon.ico") # Sets the icon of the UI

tk.Tk.wm_title(self, "Torcelli’s Law Sensor") # Sets the title of the main

UI window

container = tk.Frame(self)

container.pack(side="top", fill="both", expand = True)

container.grid_rowconfigure(0, weight=1)

container.grid_columnconfigure(0, weight=1)

self.frames = {}

for F in (StartPage, PageOne, PageTwo, PageThree, PageFour, PageFive): #

Defines all of the pages present in the UI

frame = F(container, self)

self.frames[F] = frame

frame.grid(row=0, column=0, sticky="nsew")

self.show_frame(StartPage)

def show_frame(self, cont):



frame = self.frames[cont]

frame.tkraise()

self.geometry(’500x650+650+180’) #Defines the size of the main UI window

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------

# Main home page of UI

--------------------------------------------------------------------------------------------------------------------------------------------

class StartPage(tk.Frame):

def __init__(self, parent, controller):

tk.Frame.__init__(self,parent)

label = tk.Label(self,text="Torcelli’s Law", font=LARGE_FONT)

label.pack(pady=10,padx=10)

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=70,padx=10)

label = tk.Label(self, text="Menu", font=LARGE_FONT)

button = ttk.Button(self, text="Settings",

command=lambda: controller.show_frame(PageOne)) #

Settings menu button opens Setting menu

button.pack()

button2 = ttk.Button(self, text="Run",

command=lambda: controller.show_frame(PageTwo)) # Run

button opens Run page

button2.pack()#

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=70,padx=10) #Empty label for formatting purposes

button3 = ttk.Button(self, text="Liquid Detector",

command=lambda: controller.show_frame(PageFive)) #Liquid

detector button opens Liquid detector page

button3.pack()

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------

# Settings Menu Page

----------------------------------------------------------------------------------------------------------------------------------------------



class PageOne(tk.Frame):

def __init__(self, parent, controller):

tk.Frame.__init__(self, parent)

label = tk.Label(self, text="Settings Menu", font=LARGE_FONT) #Title of page

"Settings Menu"

label.pack(pady=35,padx=10)

L1 = Label(self, text="COM Port:", font=LARGE_FONT) #Names the COM Port

setting

L1.pack()

COM = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

COM.insert(END, settings[’COM’]) #Puts the saved previous value into the

entry box

entryString = COM.get()

COM.pack()

label = tk.Label(self, text="", font=LARGE_FONT) #Empty label for formatting

purposes

label.pack(padx=10)

L2 = Label(self, text="Beta ($\beta$) :", font=LARGE_FONT) #Names the Beta

setting

L2.pack()

beta = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

beta.insert(END, settings[’beta’]) #Puts the saved previous value into the

entry box

entryString = beta.get()

beta.pack()

label = tk.Label(self, text="", font=LARGE_FONT) #Empty label for formatting

purposes

label.pack(padx=10)

L2 = Label(self, text="V0 :", font=LARGE_FONT) #Names the V0 setting

L2.pack()

V0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

V0.insert(END, settings[’V0’]) #Puts the saved previous value into the entry

box

entryString = V0.get()

V0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

L2 = Label(self, text="H :", font=LARGE_FONT)



L2.pack()

H = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

H.insert(END, settings[’H’]) #Puts the saved previous value into the entry

box

entryString = H.get()

H.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

L2 = Label(self, text="G :", font=LARGE_FONT)

L2.pack()

G = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

G.insert(END, settings[’G’]) #Puts the saved previous value into the entry

box

G1 = G.get()

settings[’G’] = G1

G.pack()

label = tk.Label(self, text="", font=LARGE_FONT) #Empty label for formatting

purposes

label.pack(pady=5,padx=10)

def makeSomething(name, variable): #A function which allows you to add

inputted values to a previously defined dictionary or list

settings[name] = variable.get()

def Save(filename): #A function which writes all of the settings to a text

file

x = open(filename, "w")

x.writelines(str(settings[’COM’]))

x.writelines("\n")

x.writelines(str(settings[’beta’]))

x.writelines("\n")

x.writelines(str(settings[’V0’]))

x.writelines("\n")

x.writelines(str(settings[’H’]))

x.writelines("\n")

x.writelines(str(settings[’G’]))

x.close()

button3 = ttk.Button(self, text = ’Accept’, command=lambda:[makeSomething(’

COM’, COM), makeSomething(’beta’, beta), makeSomething(’V0’, V0),

makeSomething(’H’, H), makeSomething(’G’, G), Save("settings.txt")])#

Button which will save the values

button3.pack()

label = tk.Label(self, text="", font=LARGE_FONT)



label.pack(pady=0,padx=10)

button2 = ttk.Button(self, text="Run",

command=lambda: controller.show_frame(PageTwo)) #Button

which takes you to the experiment run page

button2.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=10,padx=10)

button1 = ttk.Button(self, text="Back to Menu",

command=lambda: controller.show_frame(StartPage)) #

Button which will take you back to the main menu

button1.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=10,padx=10)

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

# Experiment Run page

--------------------------------------------------------------------------------------------------------------------------------------------

class PageTwo(tk.Frame):

def __init__(self, parent, controller):

tk.Frame.__init__(self, parent)

label = tk.Label(self, text="Run Experiment", font=LARGE_FONT)

label.pack(pady=10,padx=10)

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=10,padx=10)

progress=Progressbar(self,orient=HORIZONTAL,length=100,mode=’determinate’)

def millis(): #Function needed to measure the time taken for the experiment

to run correctly

"return a timestamp in milliseconds (ms)"

tics = ctypes.c_int64()

freq = ctypes.c_int64()

#get ticks on the internal ˜2MHz QPC clock

ctypes.windll.Kernel32.QueryPerformanceCounter(ctypes.byref(tics))

#get the actual freq. of the internal ˜2MHz QPC clock



ctypes.windll.Kernel32.QueryPerformanceFrequency(ctypes.byref(freq))

t_ms = tics.value*1e3/freq.value

return t_ms

def FileExplorer(): #Function which allows the file explorer to open on a

specific file location

subprocess.Popen(r’explorer /select,"C:\Users\JamieSomers\Desktop\GUI\

Run_Results.csv"’)

def flush(): #Flushes the excel file so the code reads the newly saved

values

f = open(’Run_Results.csv’,’r’)

f.flush()

def bar(): #Function which defines the progress bar

import time

green = 0

Ti = 0

begin = True

time.sleep(6)

while green < 90000:

if begin == True:

Ti = millis();

begin = False;

green = millis() - Ti

progress[’value’] = green/900

self.update_idletasks()

time.sleep(1)

progress.pack()

def RUN(): # Main function of the experiment which reads all of the values

from the arduino, displays them in the UI and saves them to a csv file

board = Arduino("COM{}".format(settings["COM"])) #Identifies the COM

Port which the Arduino is connected to based on the COM port set in

the settings menu

iterator = util.Iterator(board) #To read analog ports we need to start

an iterator thread

iterator.start() #This means the board will stop sending data to serial

a0 = board.get_pin(’a:0:i’) #This identifies the pin the pressure sensor

is connected to as an input and a variable we can use in our code

beta = float(settings["beta"]) #This takes the beta value defined in the

settings menu

V0 = float(settings["V0"]) #" "

H = float(settings["H"])#" "

G = float(settings["G"])#" "

t = 0 #This sets the time t = 0

T0 = 0 #This sets the time T0 = 0

first = True #This statement is required for the millis() at the

beginning of the experiment to be recorded



a = [] #This is a list that will store the time and height values for

the experiment

f = open("Run_Results.csv", "w") #Opens the Run_Results excel file

f.truncate() #Deletes any previous values in the excel file so it is

free to use

f.close() #Closes the excel file

time.sleep(1.0) #Tells the program to sleep for 1 second, this is

required when using PyFirmata otherwise the Arduino will be

unresponsive

while t < 90000: #This is the limit to how long the experiment should

run for in miliseconds, it is set at 90 seconds

N = 1000*(a0.read()) #Defines the interger N, since we are using

python instead of C++ we are required to multiply the sensor

data by 1,000 to get the same value

V = G*N #Defines the Voltage V as being G multiplied by N

h = (V-V0)/beta #Defines the height as being V - V0 divided by beta

#h = H - ((0.034*t)/2 - 2) #height value for ultrasonic sensor

if h <= H: #If the height of the liquid is less than or equal to the

height of the container

if first == True: #This will first be a boolean that equates to

true before staying false for the duration of the experiment

T0 = millis(); #This takes the time the experiment was

started

first = False; #This stops the if statement from running

again and deleting the start time

t = millis() - T0 #This measures the time as being the current

time on the machines clock minus the start time

a += [float(t), float(h)]; #This saves both the t and h values

in the a list defined above

textbox.insert(END,[t/1000, h,]) #This displays both the t value

in seconds and the h value on the GUI

textbox.insert(END, ’\n’) #This causes the next set of data to

be displayed on the line below

textbox.see(’end’) #This causes the UI to scroll as new values

are added

with open("Run_Results.csv", "a+", newline=’’) as file: #Opens

the results csv file

writer = csv.writer(file, delimiter=’,’) #Tells the program

to seperate the values with a comma (comma-seperated

values)

writer.writerow([t/1000, h]) #Writes the time in seconds and

the height in cm’s to the file

else:

print("")

print("!RSET") #If the height of the liquid h is greated than

the inputted height of the container H than the experiment

should not begin

board.exit() #It is required to exit the board otherwise Anaconda will

need to be restarted for the COM port to be cleared



w = threading.Thread(target=bar) #It is required to run the progress bar

through a Daemon thread to avoid it becoming unresponsive

w.setDaemon(True)

t = threading.Thread(target=RUN) #It is required to run the experiment

measurement through a Daemon thread to avoid the UI becoming

unresponsive

t.setDaemon(True)

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=10,padx=10)

button7 = ttk.Button(self, text="Start",

command=lambda:[t.start(),w.start()]) #This button

starts the readings and progress bar at the same

time

button7.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(pady=5,padx=10)

textbox = Text(self, bd=2, height=15, width=40)

textbox.pack(padx=85)

button2 = ttk.Button(self, text="Open CSV File ",

command=lambda: FileExplorer()).place(x=85, y=470) #This

button opens the file explorer where the results

are saved

button3 = ttk.Button(self, text=" Graph ",

command=lambda:[controller.show_frame(PageThree), flush

()]).place(x=217.5, y=470) #This button takes you to

the graph page and flushes the excel values

button4 = ttk.Button(self, text="Analyze Data",

command=lambda: controller.show_frame(PageFour)).place(x

=335, y=470) #This button takes you to the least

squared fitting page

button1 = ttk.Button(self, text="Back to Menu",

command=lambda: controller.show_frame(StartPage)).place(

x=214, y=550) #This button takes you back to the

menu

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------



# Graph Generation page

-------------------------------------------------------------------------------------------------------------------------------------------

class PageThree(tk.Frame):

def __init__(self, parent, controller):

tk.Frame.__init__(self, parent)

label = tk.Label(self, text="Graph", font=LARGE_FONT)

label.pack(pady=10,padx=10)

PageThree.update(self)

def Graph(): #Defines the graph function which will create a matplotlib

scatterplot in the UI

PageThree.update(self)

self.update()

f = open(’Run_Results.csv’,’r’) #Opens the results just recorded in the

Experiment Run page

my_file = f

temp_data=[] #A new list to store temp data

for line in my_file: #This is the beginning of the function ’for’ which

tells the program what to do FOR every line in the opened file

my_file created above.

t, h = line.split(’,’) #This tells the program to seperate the file

on each line into a stringe with two components an x components,

they will be split wherever there is a comma in the string.

temp_data += [float(t), float(h)] #Saves the t and h values measured

in a temp list

my_file.close()#Closes the csv file

data_set = np.array(temp_data) #places the temp data in a numpy array

t_data = data_set[0::2] #This is using whats known as ’Slice Notation’,

specifically this line of code tells the program to take the first

element in the list before stepping 1 and taking what would be the

third element, the reason its skipping one is to ignore the h-values

as this is the variable for t_data.

h_data = data_set[1::2] #This is more Slice notation telling the program

to start at the second element in the list (1, since python starts

counting at 0) and step 1 element every time as this is the variable

for h_data.

f = Figure(figsize=(5,5), dpi=100) #Creates a figure window with our

defined dimensions and dpi

a = f.add_subplot(111) #Adds a subplot to the figure window

a.scatter(t_data,h_data, s=0.5, color="red") #Creates a scatterplot with

our t and h values



canvas = FigureCanvasTkAgg(f, self) #The canvas allows us to have the

figure show in our UI

canvas.draw() #This shows the figure in the UI

canvas.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True)

toolbar = NavigationToolbar2Tk(canvas, self) #This allows us to have a

tool bar which we can use to zoom in and out aswell as save the

scatterplot

toolbar.update()

canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)

generate = ttk.Button(self, text="Generate",

command=lambda: Graph()) #Creates a generate button

which will generate the scatter plot

generate.pack()

button1 = ttk.Button(self, text="Back",

command=lambda: controller.show_frame(PageTwo)) #Creates

a back button which allows us to go back to the

Experiment Run page

button1.pack()

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------

#Least Squares Fitting page

---------------------------------------------------------------------------------------------------------------------------------------

class PageFour(tk.Frame):

def __init__(self, parent, controller):

tk.Frame.__init__(self, parent)

label = tk.Label(self, text="Least Squares Fitting", font=LARGE_FONT)

label.pack(pady=10,padx=10)

PageThree.update(self)

self.update()

filename = tk.Label(self, text="Empty").place(x=65, y=200) #Sets the

filename as Empty before the user selects a file

A0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

A0.insert(END, analysis_data[’A0’]) #Inserts the saved guess value for A

A0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

B0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)



B0.insert(END, analysis_data[’B0’]) #Inserts the saved guess value for B

B0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

C0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

C0.insert(END, analysis_data[’C0’]) #Inserts the saved value for C

C0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

textbox = Text(self, bd=2, height=15, width=45)

textbox.place(x=65, y=240) #Creates a text box

def filefinder(): #Defines a function which allows the user to select a file

and run least squared fitting on it

textbox = Text(self, bd=2, height=15, width=45).place(x=65, y=240) #

Defines the textbox within the scope of the function

file = filedialog.askopenfile(parent=self,mode=’rb’,title=’Choose a file

’) #creates a button which allows the user to select a file

if file:

data = open(os.path.basename(file.name)) #Opens the file based on

the file path name

filename = tk.Label(self, text="

").place(x=65, y=200)

#Creates a blank name on top of the filename so multiple file

names dont overlap

filename = tk.Label(self, text=os.path.basename(file.name)).place(x

=65, y=200) #Replaces the Empty filename with the actual file

name

excel_temp = [] #Creates a list for temp excel values

for line in data: #This is the beginning of the function ’for’ which

tells the program what to do FOR every line in the opened file

’data’ created above.

t, h = line.split(’,’) #This tells the program to seperate the

file on each line into a stringe with two components, a t

component and a h component, they will be split wherever

there is a comma in the string.

excel_temp += [float(t), float(h)] #Writes the t and h values to

the temp excel list

file.close() #closes the file

data_set = np.array(excel_temp) #puts the temp excel values into a

numpy array

t_data = data_set[0::2] #This slices all of the t values

h_data = data_set[1::2] #This slices all of the h values

N=len(t_data) #the number of t values

t_best = np.linspace(t_data[0],t_data[N - 1],num=300) #Creates 300

values in between the t values gotten 0 to 90 seconds, so that



our line of best fit is smoother

inpA0 = A0.get() #Gets the A guess inputted

inpB0 = B0.get() #Gets the B guess inputted

inpC0 = C0.get() #Gets the C guess inputted

floatA0=float(inpA0) #Changes the value inputed for A into a

floating point number. This changes intergers into usable values

with a decimal.

floatB0=float(inpB0) #Changes the value inputed for B into a

floating point number. This changes intergers into usable values

with a decimal.

floatC0=float(inpC0) #Changes the value inputed for C into a float

point number. This changes intergers into usable values with a

decimal.

init_guess = np.array([floatA0,floatB0,floatC0]) #Creates a numpy

array for the A, B and C guess

def lin_fit(par): #This line is the beginning of a new function

denoted by the def keyword, and the function name which is

defined as lin_fit with the argument (par).

A=par[0] #This line sets up the variable ’A’ to be hard coded as

0 in the function parameters.

B=par[1] #This line sets up the variable ’B’ to be hard coded as

1 in the function parameters.

C=par[2] #This line sets up the variable ’C’ to be hard coded as

2 in the function parameters.

squared\_diff = ((A*((t_data)**2) + B*(t_data) + C)-h_data)**2 #

This equation is given the name ’squared$\_$diff’ its the

squared difference of a quadratic equation

sum_squares = np.sum(squared_diff) #Since the calculation above

uses many different values for the t_data and h_data, this

line uses the NumPy SUM function to add up all of the

answers and gives this answer the variable name sum_squares

return sum_squares

best_fit = sp.optimize.fmin(lin_fit, init_guess, maxiter=None,

maxfun=None, full_output=0, disp=0, retall=0, callback=None) #

This creates the line of best fit using sp.omtimize

textbox = Text(self, bd=2, height=15, width=46)

textbox.place(x=65, y=240)

textbox.see(’end’) #Allows us to scroll to the newest value in the

textbox

t = t_data #defines t and the t_data

y1=(floatA0*((t_data)**2) + floatB0*(t_data) + floatC0) #Creates a

y1 value based on our guesses and our t values

y2=(best_fit[0]*((t_best)**2) + best_fit[1]*(t_best) + best_fit[2])

#Creates a y2 value based on the best fit lines calculated

def line(tdata,A,B,C): #This line is the beginning of a new function

denoted by the def keyword, and the function name which is

defined as line with the arguments (tdata,A,B and C).

return A*((t_data)**2) + B*(t_data) + C #This is the return

statement, it returns the value produced by the equation



when the values for tdata,A,B and C are all inputted.

best_fit, cov = sp.optimize.curve_fit(line, t_data, h_data,[floatA0,

floatB0,floatC0]) #Creates two variables best_fit and cov, which

both equate to an optimized curve fit function where our

equation is f, our x values are x_data, our y values are y_data

and uses our initial guesses A0, B0 and C0. these variables both

produce arrays

fit_err = np.sqrt(np.diag(cov)) #Creates a variable named fit_err

which equates to the square root of the diagonal array produced

by the cov variable defined above.

textbox.insert(END,"Best fit value of A:") #Writes the line to the

textbox

textbox.insert(END,"\n") #Writes a new line to the textbox

textbox.insert(END,[best_fit[0],"$\pm$", fit_err[0]]) #Writes the

best fit value and the error

textbox.insert(END,"\n")

textbox.insert(END,"\n")

textbox.insert(END,"Best fit value of B:")

textbox.insert(END,"\n")

textbox.insert(END,[best_fit[1],"$\pm$", fit_err[1]])

textbox.insert(END,"\n")

textbox.insert(END,"\n")

textbox.insert(END,"Best fit value of C:")

textbox.insert(END,"\n")

textbox.insert(END,[best_fit[2],"$\pm$", fit_err[2]])

fig = plt.figure(figsize=(10,10)) #Creates a plt figure named fig

with our dimensions defined

plt.scatter(t_data, h_data, s=1, color="red") #Scatter plot made

using our t and h values found and selects the data point size

and color

plt.plot(t_best, y2, color="blue", linewidth=1.5)#line of best fit

using the 300 data points between 0 and 90 seconds and the best

fit values for y. The color of the line of best fit is blue and

the line width is 1.5

plt.xlabel(’Time (s)’) #label the x-axis with the word "Time (s)"

plt.ylabel(’Height (cm)’) #label the y-axis with the word "Height (

cm)"

plt.title(’Head versus time (data points in red, best fit line in

blue)’) #label the plot title Head versus time (data points in

red, best fit line in blue)

button1 = ttk.Button(self, text="Select File",

command=lambda:filefinder()).place(x=354, y=200) #Button

to select a file

button1 = ttk.Button(self, text="Back",



command=lambda: controller.show_frame(PageTwo)).place(x

=214, y=550) #Button to go back to the Run

Experiment Page

#

------------------------------------------------------------------------------------------------------------------------------------------------------------------

# Liquid Detector page

--------------------------------------------------------------------------------------------------------------------------------------------

class PageFive(tk.Frame):

def __init__(self, parent, controller):

tk.Frame.__init__(self, parent)

label = tk.Label(self, text="Liquid Detector / Indentifier", font=LARGE_FONT

)

label.pack(pady=10,padx=10)

PageThree.update(self)

self.update()

filename = tk.Label(self, text="Empty").place(x=65, y=200) #Sets the

filename as Empty before the user selects a file

A0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

A0.insert(END, analysis_data[’A0’]) #Inputs the guess for A0

A0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

B0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

B0.insert(END, analysis_data[’B0’]) #Inputs the guess for B0

B0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

C0 = tk.Entry(self,bd=1, show=None, font=LARGE_FONT)

C0.insert(END, analysis_data[’C0’]) #Inputs the guess for C0

C0.pack()

label = tk.Label(self, text="", font=LARGE_FONT)

label.pack(padx=10)

def openNewWindow(liquidname): #Defines the function which opens a new

window with the liquid name in it

# Toplevel object which will

# be treated as a new window



newWindow = Toplevel(self)

# sets the title of the

# Toplevel widget

newWindow.title("Liquid Identified") #Names the window ’Liquid

Identified’

# sets the geometry of toplevel

newWindow.geometry("255x20+770+500") #Sets the window dimensions

# A Label widget to show in toplevel

Label(newWindow,

text = liquidname).pack()

fig = Figure(dpi=90)

a = Axes3D(fig) #Creates a figure with 3D dimensions

a.scatter(Water_database[0][0], Water_database[0][1], Water_database[0][2],

color=’blue’) #Generates the first water vector in blue

a.scatter(Water_database[1][0], Water_database[1][1], Water_database[1][2],

color=’blue’) #Generates the second water vector in blue

a.scatter(Washingup_database[0][0], Washingup_database[0][1],

Washingup_database[0][2], color=’green’)#Generates the first washingup

liquid vector in green

a.scatter(Washingup_database[1][0], Washingup_database[1][1],

Washingup_database[1][2], color=’green’)#Generates the second washingup

liquid vector in green

a.scatter(Carbonated_database[0][0], Carbonated_database[0][1],

Carbonated_database[0][2], color=’red’)#Generates the first carbonated

soda vector in red

a.scatter(Carbonated_database[1][0], Carbonated_database[1][1],

Carbonated_database[1][2] , color=’red’)#Generates the second carbonated

soda vector in red

a.scatter(Honey_database[0][0], Honey_database[0][1], Honey_database[0][2],

color=’orange’)#Generates the first honey vector in orange

a.scatter(Honey_database[1][0], Honey_database[1][1], Honey_database[1][2],

color=’orange’)#Generates the second honey vector in orange

canvas = FigureCanvasTkAgg(fig, self)

canvas.draw() #Creates the 3D plot

canvas.get_tk_widget().pack(side=tk.BOTTOM)

toolbar = NavigationToolbar2Tk(canvas, self) #Creates the same toolbar we

used in the graph sections

toolbar.update()

canvas._tkcanvas.pack(side=tk.TOP)

def LiquidDetector(): #Defines the function which will detect the unknown

liquid



file = filedialog.askopenfile(parent=self,mode=’rb’,title=’Choose a file

’) #Lets the user choose a file to input as an unknown liquid

if file:

data = open(os.path.basename(file.name)) #opens the file based on

the path name

filename = tk.Label(self, text="

").place(x=65, y=175)

filename = tk.Label(self, text=os.path.basename(file.name)).place(x

=65, y=175)

excel_temp = []

for line in data: #This is the beginning of the function ’for’ which

tells the program what to do FOR every line in the opened file

my_file created above.

x, y = line.split(’,’) #This tells the program to seperate the

file on each line into a stringe with two components an x

components, they will be split wherever there is a comma in

the string.

excel_temp += [float(x), float(y)]

file.close()

data_set = np.array(excel_temp)

x_data = data_set[0::2]

y_data = data_set[1::2]

inpA0 = A0.get()

inpB0 = B0.get()

inpC0 = C0.get()

floatA0=float(inpA0)

floatB0=float(inpB0)

floatC0=float(inpC0)

init_guess = np.array([floatA0,floatB0,floatC0])

def lin_fit(par):

A=par[0]

B=par[1]

C=par[2]

squared_diff = ((A*((x_data)**2) + B*(x_data) + C)-y_data)**2

sum_squares = np.sum(squared_diff)

return sum_squares

best_fit = sp.optimize.fmin(lin_fit, init_guess, maxiter=None,

maxfun=None, full_output=0, disp=0, retall=0, callback=None)

x = x_data

def line(xdata,A,B,C):

return A*((x_data)**2) + B*(x_data) + C

best_fit, cov = sp.optimize.curve_fit(line, x_data, y_data,[floatA0,

floatB0,floatC0])

temp_array = np.array([[best_fit[0], best_fit[1], best_fit[2]]]) #

Places the unknown liquids A, B and C values in a numpy array



distances.append(np.sqrt(((temp_array - Mean_matrix_water).transpose

() * iv_water * (temp_array - Mean_matrix_water))[0][0])) #Finds

the mahalanobis distance from the water vectors

distances.append(np.sqrt(((temp_array - Mean_matrix_washingup).

transpose() * iv_washingup * (temp_array - Mean_matrix_washingup

))[0][0])) #Finds the mahalanobis distance from the washingup

liquid vectors

distances.append(np.sqrt(((temp_array - Mean_matrix_carbonated).

transpose() * iv_carbonated * (temp_array -

Mean_matrix_carbonated))[0][0])) #Finds the mahalanobis distance

from the carbonated soda vectors

distances.append(np.sqrt(((temp_array - Mean_matrix_honey).transpose

() * iv_honey * (temp_array - Mean_matrix_honey))[0][0])) #Finds

the mahalanobis distance from the honey vectors

smallest_value = distances[0] #makes the smallest value the first

distance

for i in range(len(distances)): #for i in the range of the number of

distances

if distances[i] <= smallest_value: #if distance i is smaller or

equal to the smallest value

smallest_value = distances[i] #make that distance the new

smallest value

else:

smallest_value = smallest_value #keep the smallest value the

same

index = distances.index(smallest_value) #find what index in the list

the smallest value is

if index == 0: #if its the first distance, the liquid is identified

as water

openNewWindow(’Water’)

elif index == 1: #if its the second distance, the liquid is

identified as washing-up liquid

openNewWindow(’Washing-up liquid’)

elif index == 2: #if its the third distance, the liquid is

identified as carbonated soda

openNewWindow(’Carbonated Soda’)

else: #if its none of the above distances, its the fourth distance

and the liquid is identified as honey

openNewWindow(’Honey’)

distances.clear() #This clears the distances list so the function

can be run again

a.scatter(temp_array[0][0], temp_array[0][1], temp_array[0][2],

color=’black’) #generates the unknown liquid vector in black

canvas.draw() #generates a new 3d plot

filebutton = ttk.Button(self, text="Select File",

command=lambda:LiquidDetector()).place(x=354, y=170) #

Creates the button which runs the liquid detector

once a file is selected

backbutton = ttk.Button(self, text="Back",



command=lambda: controller.show_frame(StartPage)).place(

x=214, y=570) #Button to go back to the start page

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

app = GUI()

app.mainloop()

Python code used to plot efflux velocity

# -*- coding: utf-8 -*-

"""

Created on Wed Apr 7 12:42:58 2021

@author: JamieSomers

"""

import numpy as np

import matplotlib.pyplot as plt

filename = input(’Data file name (including extension): ’) #Type in the name of the

csv file

data = open(filename) #Opens csv file for use

excel_temp = [] #temp list

v = [] #list for v values

for line in data: #This is the beginning of the function ’for’ which tells the

program what to do FOR every line in the opened file my_file created above.

t, y = line.split(’,’) #This tells the program to seperate the file on each line

into a stringe with two components t and y components, they will be split

wherever there is a comma in the string.

excel_temp += [float(t), float(y)] #saves the t and y values as floats in the

temp list

data.close() #close the csv file after use

t_data = excel_temp[0::2] #This is using whats known as ’Slice Notation’,

specifically this line of code tells the program to take the first element in

the list before stepping 1 and taking what would be the third element, the

reason its skipping one is to ignore the y-values as this is the variable for

t_data.

y_data = excel_temp[1::2]

for i in range(len(t_data)):

v.append(np.sqrt(2*981*y_data[i])) #This is the equation for efflux velocity,

the square root of 2 g h, g is in cm/sˆ1

plt.plot(t_data, v, color="red") #Scatterplot using t-values, v values, and changes

the color to red.

plt.xlabel(’Time (s)’) #label the x-axis with the word "’Time (s)’)"



plt.ylabel(’Velocity (cm s$ˆ{-1}$)’) #label the y-axis with the word "Velocity (cm s

ˆ-1)"

plt.title(’Efflux speed versus time’) #label the plot title "Efflux speed versus

time"

plt.savefig(’Efflux1.png’, dpi=200)#This line of code saves the plot as a .png in

higher resolution than Spyder will allow

plt.show()


	Introduction:
	Project Objectives:
	Experimental Setup and Methods:
	Data Presentation and Analysis
	Discussion of Results
	Conclusions and Potential Improvements

