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1 Experimental Details:

1.1 Experiment 1

The apparatus of the first experiment consisted of three masses, two of which were attached to

Pulleys using twine that was connected to a central ring which also had the third mass attached

with twine. (See Fig, 1.1)

Figure 1.1: Apparatus Diagram . Figure 1.2: Apparatus with vectors (~v) & angles (θ)

The important measurements of this experiment are the three masses: (M1,M2 and M3) which

are used to help work out the three vector forces: (F1, F2 and F3) and the three angles:

(θ1,θ2 and θ3). (See Fig, 1.2).

1.2 Experiment 2

Figure 1.3: Apparatus Diagram . Figure 1.4: Apparatus with vectors (~v) & angles (θ)
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The apparatus for the second experiment consisted of two masses, both attached to Pulleys

using string so that the system was in equilibrium. (See Fig 1.3)

The important measurements of this experiment are the two masses (M1 and M2) which are

used to work out the vector forces (m~g) and it is important to ensure the string is perfectly

horizontal which means it has an angle of 180◦.

2 Results and Discussion:

Table 1: Results of experiment 1:

Mass 1 (kg) Mass 2 (kg) Mass 3 (kg) θ1(
◦) θ2(

◦) θ3(
◦)

0.075 0.055 0.105 110 110 140
0.13 0.155 0.125 125 130 105

|F 1| = m1g, 0.73575 = (0.075)(9.81) |F 1| = m1g, 1.2753 = (0.13)(9.81)

F x = Fcosθ, −*0.69 = (0.73575)cos(20◦) F x = Fcosθ, −*1.04 = (1.2753)cos(35◦)

F y = Fsinθ, 0.25 = (0.73575)sin(20◦) F y = Fsinθ, 0.73 = (1.2753)sin(35◦)

|F 2| = m2g, 0.53955 = (0.055)(9.81) |F 2| = m2g, 1.52055 = (0.155)(9.81)

F x = 0, 0 = (0.53955)cos(90◦) F x = 0, 0 = (1.52055)cos(90◦)

F y = −0.54, −*0.54 = (0.53955)sin(90◦) F y = −1.52, −*1.52 = (1.52055)sin(90◦)

|F 3| = m3g, 1.03005 = (0.105)(9.81) |F 3| = m3g, 1.22625 = (0.125)(9.81)

F x = 0.97, 0.97 = (1.03005)cos(20◦) F x = 0.94, 0.94 = (1.22625)cos(40◦)

F y = 0.35, 0.35 = (1.03005)sin(20◦) F y = 0.79, 0.79 = (1.22625)sin(40◦)

Figure 2.1: Vector Graph 1 . Figure 2.2: Vector Graph 2 .
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It should be noted that (−*) is used to represent values that are positive in our calculations

but are made negative due to the vectors direction on the Cartesian plane.

.

Figure 2.3: Co-Ordinate F1

To calculate the angle, we needed to use our vector diagram

to determine what angle F1 made with the x-axis, using θ1 which

was 110◦ we took away the right angle which was in the negative

y direction and got 110◦−90◦ = 20◦. This new angle is the one we

used for our calculations since we know F1 = 0.73575 and θ = 20◦

F x = (0.73575)cos(20◦)

F y = (0.73575)sin(20◦)

Which gave us an F x value of 0.69 and an F y value of 0.25, We

know that our F1 vector was left and therefore we changed our

F x value to a negative.

.

Figure 2.4: Co-Ordinate F2

It was much easier to calculate this angle, as the mass was

hanging perfectly vertically downwards, our x value is always go-

ing to be zero and the angle our vector makes with the x axis is

90◦ as it is perfectly perpendicular. We know F2 = 0.53955 and

θ = 90◦

F x = (0.53955)cos(90◦)

F y = (0.53955)sin(90◦)

Which gave us an F x value of 0 and an F y value of 0.54, We

know that our F2 vector was downward and therefore we changed

our F y value to a negative.

Figure 2.5: Co-Ordinate F3

We then repeat this one more time for F3, since we know that

θ1 and θ2 were the same angles we already know that our angle is

going to be 20◦, and we know F3 = 1.03005.

F x = (1.03005)cos(20◦)

F y = (1.03005)sin(20◦)

Which gave us an F x value of 0.97 and an F y value of 0.35, both

of which already have the correct direction.
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We then repeat this process again, this time calculating the Co-Ordinates of our second

vector graph.

.

Figure 2.6: Co-Ordinate F1

We used our vector diagram to determine what angle F1 made

with the x-axis, using θ1 which was 125◦ we took away the right

angle which was in the negative y direction and got 125◦ − 90◦ =

35◦. This new angle is the one we used for our calculations since

we know F1 = 1.2753 and θ = 35◦

F x = (1.2753)cos(35◦)

F y = (1.2753)sin(35◦)

Which gave us an F x value of 1.04 and an F y value of 0.73, We

know that our F1 vector was left and therefore we changed our

F x value to a negative.

.

Figure 2.7: Co-Ordinate F2

Once again, It was much easier to calculate this angle, as the

mass was hanging perfectly vertically downwards, our x value is

always going to be zero and the angle our vector makes with the x

axis is 90◦ as it is perfectly perpendicular. We know F2 = 1.52055

and θ = 90◦

F x = (1.52055)cos(90◦)

F y = (1.52055)sin(90◦)

Which gave us an F x value of 0 and an F y value of 1.52, We

know that our F2 vector was downward and therefore we changed

our F y value to a negative.

Figure 2.8: Co-Ordinate F3

This time we know that θ1 and θ2 are not the same angles, so

we have to use θ2 and once again subtract the right angle below

the x-axis, therefore we do 130◦ − 90◦ = 40◦. Now we know that

our angle is 40◦, and F3 = 1.22625.

F x = (1.22625)cos(40◦)

F y = (1.22625)sin(40◦)

Which gave us an F x value of 0.94 and an F y value of 0.79, both

of which already have the correct direction.
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2.1 Polygon method & Components method:

The concept the Polygon method is to place the vectors end to end in order to visually see how

they affect each other. Using the Polygon method on our first vector diagram we get this:

Figure 2.9: Polygon Diagram of Vector 1

Using the polygon vector on our second vector diagram we get:

Figure 2.10: Polygon Diagram of Vector 2

As we can see our vectors almost perfectly align to (0,0), however it is slightly off.
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We can use the component method to workout how off our vectors are from (0,0) mathe-

matically: Using the component equation involves adding all our x values together like so:

1F x + 2F x + 3F x + ...

(1)

Since we only have two Fx values (since F2’s Fx value is 0) we only have to add the two of them.

Vector 1: −0.69 + 0.97 = 0.28

Vector 2: −1.04 + 0.94 = −0.1

Next we have to add all of the y values together using:

1F y + 2F y + 3F y + ...

(2)

Since we have three Fy values, we must add all three of them. Vector 1 and Vector 3 are both

positive in the y-axis and Vector 2 is negative.

Vector 1: 0.25 + 0.35− 0.54 = 0.06

Vector 2: 0.73 + 0.79− 1.52 = 0

Now that we’ve finished these calculations we can determine how far from (0,0) our values are

by getting the x and y co-ordinates for each vector:

Vector 1: (0.28, 0.006)

Vector 2: (−0.1, 0)

As we can see, the vector forces that would cause these co-ordinates would be extremely small

and it is highly likely that these discrepancies are the result of unaccountable external forces

acting on the system and reducing our accuracy. If we could carry out this experiment in a

vacuum without the influence of external forces these co-ordinates would most likely reduce to

(0,0) as expected.
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2.2 Experiment 2

Table 2: Results of experiment 2 (Adding 2 grams to equilibrium system):

Unblocked: Blocked:

Run 1 0.00 2.44
Run 2 0.00 2.04
Run 3 0.00 1.98
Run 4 0.00 2.03
Run 5 0.00 1.95
Run 6 0.00 1.93
Run 7 0.00 2.11
Run 8 0.00 2.10
Run 9 0.00 1.89
Run 10 0.00 2.58

Table 3: Results of experiment 2 (Adding 20 grams to equilibrium system):

Unblocked: Blocked:

Run 1 0.00 0.46
Run 2 0.00 0.44
Run 3 0.00 0.49
Run 4 0.00 0.50
Run 5 0.00 0.45
Run 6 0.00 0.46
Run 7 0.00 0.50
Run 8 0.00 0.51
Run 9 0.00 0.42
Run 10 0.00 0.47

Table 4: Measurements of experiment 2 used:

Distance between lightgates Added Mass (g)

15 cm 2
15 cm 20

(i) How much extra mass is required to cause acceleration?

2 grams of extra force resulted in the system leaving equilibrium and caused the mass to accel-

erate.

why isn’t motion observed as soon as m2 > m1?

Ideally if the pulley system existed without the affect of any external forces acting on it, we

would see the system leave equilibrium as soon as there was any change in either of the two

masses, however due to external forces such as friction playing into the experiment, this did not

occur until at least 2 grams of force was applied to one side of the system.
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Can we determine contribution of frictional forces?

Since we know that any amount of external force ’should’ ideally make the system lose equilib-

rium and that in our experiment we require 2 grams of weight in order for this to occur, we can

determine the amount of frictional forces at play using the equation:

F = m a

(3)

Where our mass (m) is the 2 grams (0.002 kg) required to cause the system to leave equilibrium,

and acceleration (a) is the acceleration due to gravity (9.81 ms-2).

Using Eq.1 gives us:

0.01962 = (0.002)(9.81)

We have then determined that there is roughly 0.01962 Newtons (N) of frictional force acting

on the system which it has to overcome before it will leave equilibrium.

(ii) Calculate tension in the string T for the equilibrium and out of equilibrium

situations

We can determine the tension in the strings using:

T = 2
m1m2
m1+m2

g

(4)

Using Eq. 2 for our string in equilibrium we get:

0.981 = (2 (0.1)(0.1)
(0.1)+(0.1))(9.81)

Therefore we have 0.981N of force acting as tension on the string.

Using Eq. 2 for our string out of equilibrium we get:

0.991 = (2 (0.1)(0.102)
(0.1)+(0.102))(9.81)

Therefore we have 0.991N of force acting as tension on the string.
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(iii) Calculate acceleration a for the two masses m1m2 using the equation of

motion y = 1
2at

2. Calculate experimental tension using T = m2(g − a)

Using the equation:

y = 1
2at

2

(5)

We can work out a value for a since we know y = distance between timegates and we use our

average times for t. Manipulating Eq. 3 we get:

(2)0.15
2.1052

= 0.07ms

and

(2)0.15
0.472

= 1.36ms

We can calculate experimental Tension using:

T = m2(g − a)

(6)

Using Eq. 4 we get:

0.974 = (0.1)(9.81− 0.07)

and

0.993 = (0.102)(9.81− 0.07)

Therefore we have 0.974N and 0.993N of force acting as tension on the string respectively.

(iv) Compare experimental values of T and a with theoretical values of T and a.

Discuss results and give conclusion

To determine the difference between our two values for T we can use the equation:

| Theoretical V alue−Experimental V alue |
TheoreticalV alue x100

(7)

| 0.981− 0.974 |
0.981 x100 = 0.71%

| 0.991− 0.993 |
0.991 x100 = 0.20%

The difference between our theoretical values and experimental values are < 1%
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Our theoretical acceleration can be calculated using the equation:

a =
m2−m1
m2+m1

g

(8)

Using Eq. 6 we get:

0.10ms = 0.102−0.1
0.102+0.1(9.81)

and

0.89ms = 0.12−0.1
0.12+0.1(9.81)

We can once again use Eq. 5 to determine the difference:

| 0.10− 0.07 |
0.10 x100 = 30%

and

| 0.89− 1.36 |
0.89 x100 = 52.81%

Our Theoretical and Experimental values for Acceleration differ much greater than our values

for Tension did.

Interestingly, in both circumstances we got one value where the theoretical was higher and

one value where the experimental was higher.

3 Conclusion

We have determined that a state of equilibrium in a system is the product of all vector forces

acting on that system adding to zero, furthermore a system in equilibrium will leave equilib-

rium if an external forces is presented unevenly to the vectors, however despite theoretically

any amount of force resulting in the loss of equilibrium- in the lab there is a threshold amount

of force required to cause equilibrium to be lost. This is believed to be caused by the external

forces which aren’t accounted for within the system, most notably friction.

If this experiment was to be reproduced it would be beneficial to carry out the experiment

getting more values for a wider range of masses and angles as these extra values will help

increase the overall accuracy of the results and minimise any errors.
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