
Computational Lab Report
Graphical Methods

Report by: Jamie Somers

January 5, 2022

Abstract

Python is extremely powerful programming language for physicists and mathematicians,
not just for its ability to carry out complex maths equations but also to be able to graph
representations for these mathematical equation. We are going to be using quiver plots
to graphically represent the potential solutions to differential equations. In this report
we will be including plots containing vector fields with directions and magnitudes as well
as contour plots which gives a background color representing the magnitude. These plots
represent real physical systems specifically population, Lotka-Volterra model and limit
cycles. We do this to explore the different graphical methods of displaying differential
equations and when they don’t accurately represent the real world models they are trying
to reproduce.
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1 Introduction
This report will be building on what we have previously done regarding Euler’s method and
more importantly the Runge-Kutta fourth order method of solving differential equations in
python, however we will be moving away from these methods and focusing on quiver plots
which are used to produce vector fields. These quiver plots will graphically describe the solu-
tion to differential equations at many different points this is extremely useful for representing
different types of differential equations. In this lab report we will graphically be describing pop-
ulation simulations from differential equations. The two population models are known as the
Verhulst model and the Lotka-Volterra model respectively. In this report we will be comment-
ing on the difference between two graphical models as well as how these graphical differences
represent the theoretical differences inherent in the two models. We will then discuss some
more mathematically abstract models which we believe will help us learn more about graphical
methods in Python.

2 Background and Theory
The first thing we cover in this report is the theory surrounding the quiver plots produced in
Python. Vector fields describe the direction and magnitude of vectors at a number of points
in a plane, vector fields are common in electromagnetism and also in a field of mathematics
known as vector calculus. Its no surprise then that Pythons plotting package known as mat-
plotlib comes with the ability to create graphical representations of vector fields included in
the package.

Throughtout the report we will be making reference to vectors, vectors are any object which
has both a direction as well as a magnitude. We often display vectors graphically as arrows
where the head of the arrow denotes the direction and the length of the arrow represents the
magnitude.

Taking the vector field example one step further we can create a certain type of plot known as
a stream plot, this stream plot creates trajectories or field lines from vector fields. Each of the
stream lines represents a possible solution to a differential equation, this way we can visualise
solutions to differential equations without actually solving them.

In this experiment we will be using quiver plots and stream plots to show the expected be-
haviour of multiple differential equations, this is because quiver plots and by extension stream
plots are pythons way of graphing vector fields, quiver plots are extremely useful because we
can change some of the initial conditions to change how the vector field behaves, for example
one of these conditions is the number of vectors that appear per grid point this allows us to
increase or decrease the density of vectors.

The first part of this experiment concerns itself with getting familiar with these initial con-
ditions before returning to the harmonic oscillator and damped harmonic oscillator equations
we have worked with previously.

The second part of this experiment concerns itself with graphing vector fields showing the
potential solutions for population differential equations. One such equation is the logistic equa-
tion known as the Verhulst model for population. The equation is as follows:

dx

dt
≡ ẋ = rx(1 − x

K
) (1)
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Where K is the carrying capacity or the maximum population of the system, r is the rate of
growth or decay of the system and x(t) represents the population at a certain point in time.

This equation is considered to be a simple model for how population reaches equilibrium and
only focuses on one population and doesn’t account for how one population may have an impact
on another population such as a hunter / prey model which we will explore in more detail.

We will also explore the Lotka-Volterra (LV) Model which models two populations simultane-
ously and how the two populations impact each other using rabbits and foxes as the example.
The equations for the Lotka-Volterra (LV) Model is as follows:

dx

dt
= ax− bxy (2)

dy

dt
= cxy − dy (3)

Where x(t) is the population growth of the rabbits, y(t) is the population growth of the foxes,
a defines the growth rate, b is a parameter that measure how effective the foxes are at hunting
rabbits, c is a parameter that defines how beneficial rabbits are to the foxes and d is a measure
of this fox death rate.

We can see that this model uses two differential equations to represent each population and
the population of one species has an impact on the population of the other, more specifically
a higher population of foxes reduces the population of the rabbits and the decrease in rabit
populations results in a decreased fox population. When we analyse the graphs obtained from
this model we will discuss the model in more detail and its strengths and weaknesses as a
biological model to represent population.

This is all the theory we need to begin analysing the data collected from the python pro-
grammes in the next section of the report. We will not go into the results collected during the
experiment.

3 Results
Week 9

Determining fixed points
det(J)(∆) Tr(J)(τ) τ 2-4∆ Type of fixed point

-6 < 0 1 > 0 12 − 4(−6) > 0 Saddle point
6 > 0 5 > 0 52 − 4(6) > 0 Unstable Node (source)

-12 < 0 0 = 0 02 − 4(−12) > 0 Saddle point
12 > 0 -4 < 0 -42 − 4(12) < 0 Stable Spiral (sink)

Table 1: Fixed point classification using the Jacobian J
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4 Discussion and Conclusion
Upon completion of the report we have become familiar with multiple different graphical meth-
ods, initially we began with vector fields and using the quiver and streamline methods. These
tools allowed us to see the many different solutions possible for differential equations without
actually solving these equations. We also used these methods as another way to visualise simple
harmonic oscillators and damped harmonic oscillators. We then went on to observe different
types of population models, two in particular the Verhulst model (a logistic equation) and
the Lotka-Volterra model. We were able to observe both models graphically using quiver and
streamline plots and altered the initial conditions to observe the affect each one had on the
system.

The Verhulst model’s graph allowed us to better understand how the equation describes pop-
ulation growth and observe the assumptions and short coming of the model, particularly if we
were to keep expanding our time frame with the model it would no longer accurately represent
population, as well as the fact that the model does not account for external factors affecting
population.

The Lotka-Volterra model combats the failure of the Verhulst method to account for exter-
nal factors by primarily focusing on the affect two different species have on the population of
each other. We used the example of foxes and rabbits to show that hunters have an inherent
affect on the population of its pray and vice versa. This model wasn’t perfect as we found that it
would always repeat the pattern determined by the plot over time as the population never truly
remains at zero. This is one of the big limitations of this model. All of this analysis would not
have been possible without the use of quiver and streamline plots to visualise these relationships.

Going one step further with this repeat behaviour concept we explored limit cycles from non-
linear differential equations. This showed us that some differential equations mapped to systems
which either moved towards being in a stable state and entering a close phase diagram loop
or an unstable state where the phase diagram would not be a closed loop. These different
outcomes are controlled by whatever initial conditions are chosen for any particular set of
non-linear differential equations.
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