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1 Introduction:

Discovered by Henri Becquerel in 1896, Radioactivity is described as the spontaneous change

an atomic nuclei undergoes in an effort to become a more stable nuclei. There are three types

of radiation: Alpha radiation (α), Beta radiation (β) and Gamma radiation (γ). Each of these

types of radiation have unique methods for spontaneously changing an atomic nuclei, such as:

(α) Alpha Radiation:

The unstable radioactive nucleus emits two protons and two neutrons simultaneously, which is

equivilent to a 4
2He nucleus.

(β) Beta Radiation:

The unstable radioactive material emits a single electron 0
−1e from each atom.

(γ) Gamma Radiation:

Instead of emitting a charged particle, Gamma Radiation emits a high energy photon which is

an electromagnetic wave.

A Geiger-Muller tube (MG tube), is a piece of scientific equipment used to detect all three

forms of radiation mentioned above. The overall apparatus of a GM tube is two electrodes

filled with a gas (typically neon and a gas located in the halogen column of the periodic table)

which are kept at a low pressure, this gas becomes ionised as soon as radiation enters the tube.

This ionisation generates electrons in the gas which are free to move around, with their negative

charge being attracted to the positive electrode in the tube which results in the electrons gaining

energy which is used to ionise other atoms. This energy transfer process results in a voltage

pulse within the circuit of the tube which can easily and accurately be measured as the number

of counts.

Our experiment begins with the equation:

I(d) = I0e
-µd

(1)

Where I(d) is the number of gamma rays passing through the sheet, I0 is the gamma rays

heading towards an absorbing sheet where d is the thickness of the sheet and µ is a constant

associate with the material.

We already know that the number of counts C is proportional to the intensity of the gamma

rays, since we are familar with the theory behind the GM tube.

C(d) = C0e
-µd

(2)
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Where C0 is the number of counts for zero thickness. We can rewrite this equation, removing

e-µd and instead just have µd using the inverse of e which is the natural log ln.

ln(C(d)) = lnC0 − µd
(3)

We can see that the final equation is a function which states that the natural logarithm of the

counts is relative to the thickness of the sheet, with the constant µ as it’s slope, this constant

is whats known as the Attenuation Coefficient.

Preliminary Questions:

(a) State the purpose of the aluminium sheet.

Our Aluminium sheet acts as a form of shielding which inhibits the Gamma Rays ability to

travel from the radioactive source directly to the Geiger-Muller tube. Shielding is an important

safety procedure when working with radioactivity as it reduces the Gamma rays ability to cause

harm to humans.

(b) What is the effect on the counts of:

(i) increasing the distance to the source

The radioactive sources intensity is governed by the inverse square law when considering dis-

tance. The inverse square law is mathematically described as:

I1D1
2 = I2D2

2

(4)

This relationship implies that as the distance between the person and the source is increased,

the intensity of the radioactive source decreases by a square factor. So if the distance between

the person and the source is doubled, the radioactive source has 1
4 the intensity.

(ii) increasing the thickness of the aluminium sheet

As previously mentioned the aluminium acts as a form of shielding, inhibiting the Gamma Rays,

an increase in thickness will result in the shielding affect being increased also.

(iii) taking out the aluminium sheet.

Removing the aluminium sheet will end this shielding affect and the Gamma Rays will freely

be able to move from the radioactive source to the GM tube, it’s intensity only subdued by the

distance between the two.

Figure 1.1: Counts vs Position

Source: The graph starts with the counts being high due to

the position from the source being low, before decreasing due

to the inverse square law.

Lead: Once the rays reach the lead shielding the number of

counts is diminished while still being affected by the inverse

square law as the position continues increasing.

Final: After it leaves the lead shielding the counts continue

to decrease slower, solely due to the inverse square law.
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2 Experimental Setup:

Explain the setup, and indicate what safety precautions were taken

The Experimental Setup consisted of a radioactive source which was introduced as ’Radium-

226’, a box full of sheets made of varying materials of varying thicknesses, a Geiger-Muller (GM)

tube, connected to a timer \ scalar box, and a stop watch. We are using the timer \scalar box

to visually display the number of voltage pulses which the GM tube is designed to detect.

Radiation has many dangers associated with it, as a result of that- when carrying out this

experiment there was many safety precautions that were undertaken in the name of reducing

these dangers. This included:

Wearing gloves at all times during the experiment, especially whenever making contact with

the radioactive source.

Ensuring that the bench was clear of any unnecessary equipment or objects that could af-

fect our ability to carry out the experiment in a safe manner, keeping our workspace clear of

clutter.

When setting the radioactive source into its holder facing the GM tube, the entire appara-

tus was orientated away from areas of high population and instead was facing towards a wall in

the name of safety.

3 Results and Analysis:

background count per minute: 0.261 x 103

Table 1: Lead Count

Surface Density
(g/cm2)

d (cm) d (m) t (min) Counts Counts/m (min-1) C (counts/min)
- background

1.78 0.157 0.002 3 6.97 x 103 2.3233 x 103 2.0623 x 103

6.87 0.606 0.006 3 1.839 x 103 0.613 x 103 0.352 x 103

13.7 1.208 0.012 3 1.255 x 103 0.4183 x 103 0.1573 x 103

13.73 1.211 0.0121 3 1.254 x 103 0.418 x 103 0.157 x 103

Density of lead: 11.34 g cm-3

1.78
11.34 = 0.157 cm 6.87

11.34 = 0.606 cm 13.7
11.34 = 1.208 cm 13.73

11.34 = 1.211 cm
0.157
100 = 0.002m 0.606

100 = 0.006m 1.208
100 = 0.012m 1.211

100 = 0.0121m
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Figure 3.1: Counts (C) vs Thickness (d) [Lead]

From our graph we can determine that our slope is -235, with a y-intercept of 7.79

Using the LINEST function we can determine the slope uncertainty is ±51.32 and

the y-intercept uncertainty is ±0.49

Using Eq. 3 we can determine the attenuation coefficient as follows:

ln(2.0623× 103) = ln(0.261× 103)− µ(0.002)

µ = 1, 033.528368

for all of our values and we get:

µaverage = 249.794216

The reason why we get a negative slope is due to the fact that as our thickness increases (x-axis),

the number of counts the GM tube is counting decreases, this verifies that the lead is actually

shielding as we expected and that as the thickness of the material increases the shielding affect

also increases.

Slope: -235 ± 51.32

Y-intercept: 7.79 ±0.49

Attenuation Coefficient (µ): 249.79 ± 51.32
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Table 2: Aluminum Count

Surface Density
(g/cm2)

d (cm) d (m) t (min) Counts Counts/m (min-1) C (counts/min)
- background

0.0547 0.02 0.0002 3 36.039 x 103 12.013 x 103 11.752 x 103

0.141 0.052 0.00052 3 17.837 x 103 5.946 x 103 5.685 x 103

0.24 0.08 0.0008 3 11.213 x 103 3.738 x 103 3.477 x 103

0.43 0.159 0.00159 3 6.389 x 103 2.130 x 103 1.869 x 103

0.543 0.201 0.00201 3 4.933 x 103 1.644 x 103 1.383 x 103

Density of aluminium: 2.7 g cm-3

0.0547
2.7 = 0.02 cm 0.141

2.7 = 0.052 cm 0.24
2.7 = 0.08 cm 0.43

2.7 = 0.159 cm 0.543
2.7 = 0.201 cm

0.02
100 = 0.0002m 0.052

100 = 0.00052m 0.08
100 = 0.0008m 0.159

100 = 0.00159m 0.201
100 = 0.00201m
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Figure 3.2: Counts (C) vs Thickness (d) [Aluminium]

From our graph we can determine that our slope is −1104, with a y-intercept of 9.32

Using the LINEST function we can determine the slope uncertainty is ±163.51 and

the y-intercept uncertainty is ±0.20

Using Eq. 3 we can determine the attenuation coefficient as follows:

ln(11.752× 103) = ln(0.261× 103)− µ(0.0002)

µ = 19036.29

for all of our values and we get:

µaverage = 6, 053.18± 163.51
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Table 3: Steel Count

Surface Density
(g/cm2)

d (cm) d (m) t (min) Counts Counts/m (min-1) C (counts/min)
- background

3.904 0.494 0.00494 3 2.426 x 103 0.809 x 103 0.548 x 103

7.81 0.989 0.00989 3 2.055 x 103 0.685 x 103 0.424 x 103

11.712 1.483 0.01483 3 1.898 x 103 0.633 x 103 0.372 x 103

15.616 1.977 0.01977 3 1.548 x 103 0.516 x 103 0.255 x 103

19.52 2.471 0.02471 3 1.366 x 103 0.455 x 103 0.194 x 103

Density of steel: 7.9 g cm-3

3.904
7.9 = 0.494 cm 7.81

7.9 = 0.989 cm 11.712
7.9 = 1.483 cm 15.616

7.9 = 1.977 cm 19.52
7.9 = 2.471 cm

0.494
100 = 0.00494m 0.989

100 = 0.00989m 1.483
100 = 0.01483m 1.977

100 = 0.01977m 2.471
100 = 0.02471m
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Figure 3.3: Counts (C) vs Thickness (d) [Steel]

From our graph we can determine that our slope is −52.3, with a y-intercept of 6.59

Using the LINEST function we can determine the slope uncertainty is ±4.24 and

the y-intercept uncertainty is ±0.07

Using Eq. 3 we can determine the attenuation coefficient as follows:

ln(0.548× 103) = ln(0.261× 103)− µ(0.00494)

µ = 150.15

for all of our values and we get:

µaverage = 41.98± 4.24
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Table 4: Copper Count

Surface Density
(g/cm2)

d (cm) d (m) t (min) Counts Counts/m (min-1) C (counts/min)
- background

5.86 0.654 0.00654 3 17.159 x 103 5.720 x 103 5.459 x 103

11.72 1.308 0.01308 3 10.646 x 103 3.549 x 103 3.288 x 103

17.58 1.962 0.01962 3 3.066 x 103 1.022 x 103 0.761 x 103

23.44 2.616 0.02616 3 1.513 x 103 0.504 x 103 0.243 x 103

29.30 3.270 0.03270 3 0.949 x 103 0.316 x 103 0.055 x 103

Density of Copper: 8.96 g cm-3

5.86
8.96 = 0.654 cm 11.72

8.96 = 1.308 cm 17.58
8.96 = 1.962 cm 23.44

8.96 = 2.616 cm 29.30
8.96 = 3.270 cm

0.654
100 = 0.00654m 1.308

100 = 0.01308m 1.962
100 = 0.01962m 2.616

100 = 0.02616m 3.270
100 = 0.03270m
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Figure 3.4: Counts (C) vs Thickness (d) [Steel]

From our graph we can determine that our slope is −180, with a y-intercept of 10.1

Using the LINEST function we can determine the slope uncertainty is ±14.84 and

the y-intercept uncertainty is ±0.32

Using Eq. 3 we can determine the attenuation coefficient as follows:

ln(5.459× 103) = ln(0.261× 103)− µ(0.00654)

µ = 464.91

for all of our values and we get:

µaverage = 132.61± 14.84
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4 Conclusion:

We were able to find values for the attenuation coefficient that were within a: 5.92%, 81.76%,

24.58% and 35.74% margin of error respectively. 3 out of 4 of the values existed outside the

expected margin of error, with aluminium being extremely inaccurate. This 81.76% margin of

error could have been due to many things such as the aluminium sheets being the only form of

shielding that wouldn’t sit flush against each other when stacked, leaving gaps in between them.

5 Appendix:

Answer the following problem: For photons of 6 MeV, the lead attenuation coefficient is 0.057

mm . You have a source of gamma radiation of that energy which gives 1 million counts per

minute, and the safety officer wants this reduced by 95%. How thick does your lead shield have

to be to achieve this?

Using Eq. 3:

ln(C(d)) = lnC0 − µd
Where, (C(d)) = 5%(1,000,000), C0 = 1,000,000, µ = 0.057 mm Therefore:

ln(50,000)−ln(1,000,000)
0.057 = −d

d = 52.56mm
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