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1 Experimental Details:

Figure 1.1: Diagram of Experimental Setup (M1)

The experimental setup of Fig. 1.1 is such that the ball can be released from different pre-

determined heights and will travel in a straight line down the length of the track, triggering

each photo-gate that it passes before coming to a rest at the end of the track. The distance

between the photo-gates and the time it takes the ball to pass each one can be recorded as our

experimental data.

Figure 1.2: Diagram of Experimental Setup (M2)

The experimental setup of Fig. 1.2 involves the use of a ball rolling down a ramp along a wooden

board which is taped with markings at 25cm intervals. The ball is believed to be accelerating

down the length of the board, as it reaches each interval a stopwatch is used to measure the

time it took the ball to reach each interval. Ideally we should observe that it takes less time for

the ball to pass each interval as it accelerates. This is then repeated with the wooden board at

an incline opposite the ramp to represent deceleration.
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Figure 1.3: Forces acting on ball

We know from our understanding of physics that at all times there are forces acting on a body,

and in this experiment our ball is no different, especially since it is undergoing motion.

Regardless of whether the ball is moving or not we can always assume that while it is on earth

it is feeling the force of gravity pulling it downwards (Gravity), this force is amplified depending

on how heavy the object is (Mass x Gravity), as we had the ball resting on a ramp there was

an opposite force pushing it back up with an equal strength (Normal Force), which is why the

ball was able to remain on the ramp and not get pulled straight through. If the ball was resting

on a flat surface it would have remained stationary as all of these forces balanced with each

other, however our ramp was such that it had a steep incline which resulted in gravity pushing

it downwards in a direction with the least resistance. While this motion was taking place two

forms of friction occurred, the friction between the ball and the surface of the ramp (Friction)

as well as the air molecules hitting off the ball as it rolled downwards (Air Resistance).

All of these forces equated to the ball rolling in the fashion which was observed in the laboratory.

As we were using a metre stick to record the distance between our light gates, we can

assume our position measurement errors are equal to the uncertainty of a metre stick, which is

assumed to be m ± 1x10−3 m.

The timer attached to the light gate was able to measure our time component down to 5 decimal

places with an uncertainty of t ± 1x10−5 s , since we had to leave our values at 3 decimal places

as a result of the metre sticks uncertainty, it is extremely unlikely that our time measurements

are inaccurate.
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2 Results and Analysis:

2.1 Study of linear uniform motion

Table 1: Uniform motion Position: 1

Positions (m) Times (s)

0 0
0.55 0.81
0.95 1.41
1.55 2.30

Time (s)
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0.66*x + 8.89E-03 R² = 1

Figure 2.1: Graph of: Position 1 vs Time

Table 2: Uniform motion Position: 2

Positions (m) Times (s)

0 0
0.45 0.61
0.85 1.13
1.35 1.90

Time (s)

P
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0.739*x + 2.76E-03 R² = 1

Figure 2.2: Graph of: Position 2 vs Time

Table 3: Uniform motion Position: 3

Positions (m) Times (s)

0 0
0.40 0.45
0.95 1.08
1.35 1.56

Time (s)
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0.866*x + 5.77E-03 R² = 1

Figure 2.3: Graph of: Position 3 vs Time

Table 4: Uniform motion Position: 4

Positions (m) Times (s)

0 0
0.50 0.55
0.90 0.97
1.30 1.43

Time (s)
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os

iti
on

 (m
)
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0.913*x + 1.74E-03 R² = 1

Figure 2.4: Graph of: Position 4 vs Time
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Due to the experiment being based around linear motion in a straight line it would make sense

that all of our graphs representing the position in relation to time would appear as straight

lines.

Each of the tables contain data from the experiment with different distances between the light

gates and the corresponding time it took the ball to reach those light gates however the

graphs remain linear.

Using google sheets we can determine how accurate our data points hit the line of best fit by

getting an R2 Value, the closer our value is to 1, the better our data points hit our line of best

fit. As we can see in Fig 3.1 to Fig 3.4 our R2 value is consistently 1.

The big difference between our four graphs is the slope, as we go from Fig 3.1 through to Fig

3.4 we see that the value of our slope keeps increasing: {0.66, 0.739, 0.866 and 0.913}. This

increase in slope is due to the velocity of the ball changing throughout the experiment, over

the course of the 4 measurements the ball was dropped from greater and greater heights thus

increasing its velocity.

Although our experiment was extremely accurate for the most part- there are still

inaccuracies present; such as the y-intercept which identifies the origin position of the ball at

t = 0, however this didn’t perfectly map over as we would expect our Y-intercept to be zero.

2.2 Motion at constant velocity and conservation of mechanical energy

Table 5: Energy calculations to test conservation of mechanical energy

Starting height (m) Velocity (m·s-1) Kinetic energy (J) Potential energy (J) % difference

0.035 0.66 1.74x10−3 2.75x10−3 36.72
0.055 0.739 2.18x10−3 4.32x10−3 49.54
0.075 0.866 3.00x10−3 5.89x10−3 49.07
0.095 0.913 3.33x10−3 7.46x10−3 55.36

Using the equation:

Ek = 0.5xmv2 (1)

We can workout the Kinetic Energy since we know the mass of the ball is 0.008kg

1.74x10−3 = 0.5x (0.008)(0.66)2

2.18x10−3 = 0.5x (0.008)(0.739)2

3.00x10−3 = 0.5x (0.008)(0.866)2

3.33x10−3 = 0.5x (0.008)(0.913)2

We can work out the potential energy using the equation:

Ep = mgh (2)

2.75x10−3 = (0.008)(9.81)(0.035)

4.32x10−3 = (0.008)(9.81)(0.055)

5.89x10−3 = (0.008)(9.81)(0.075)

7.46x10−3 = (0.008)(9.81)(0.095)
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v² 6.99*x + -0.547 R² = 0.975

Figure 2.5: graph of v2 vs h

Although Potential energy accounts for all of the energy that could possibly be given off

during the rolling of the ball down a ramp, not all of this energy is given off in the form of

kinetic energy.

We know from carrying out the experiment that some of the energy generated by rolling a

marble from the top of a ramp is given off in the form of sound energy, as we can audibly hear

the sound energy as it is being produced,

we can also assume that due to the friction of the marble against the surface of the wooden

board that some small fraction of the potential energy was given off in the form of heat energy.

From our graph we were able to determine the value for g as 6.99 ms-2, this is different from

the expected value of 9.81 ms-2. Later in this report we will compare these two values.
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2.3 Study of non-uniform motion

Table 6: Recorded Stopwatch times at each interval (Acceleration)

Distance Time1 Time2 Time3 Time4 Time5 Time6 Time7 Time8 Time9 Time10
0.25m 0.43 0.43 0.41 0.94 0.94 0.93 0.49 0.42 0.67 0.35
0.5m 0.73 0.82 0.80 1.41 1.41 1.32 0.89 0.82 0.91 0.67
0.6m 0.88 0.97 0.95 1.53 1.56 1.47 1.04 0.97 1.06 0.82
0.65m 0.93 1.02 1 1.61 1.61 1.52 1.09 1.02 1.11 0.87
0.75m 0.98 1.04 1.04 1.71 1.68 1.58 1.12 1.05 1.13 0.96
0.80m 1.1 1.16 1.16 1.83 1.8 1.7 1.24 1.17 1.25 1.08
0.90m 1.13 1.19 1.18 1.86 1.83 1.73 1.27 1.2 1.28 1.11
1m 1.14 1.25 1.19 1.86 1.93 1.73 1.27 1.22 1.29 1.22

Table 7: Average Stopwatch times at each interval (Acceleration)

Distance (m) TimeAvg (s)

0.25 0.6
0.5 0.98
0.60 1.13
0.65 1.18
0.75 1.23
0.80 1.35
0.90 1.38
1 1.41

We can then represent our data in Table 7 on a graph:

Average Time (s)

D
is

ta
nc

e 
(m

)

0

0.25

0.5

0.75

1

Distance 0.278 + -0.418x + 0.633x^2 R² = 0.977

Figure 2.6: Average Time vs Distance (Acceleration)
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Table 8: Recorded Stopwatch times at each interval (Deceleration)

Distance Time1 Time2 Time3 Time4 Time5 Time6 Time7 Time8 Time9 Time10
0.25m 0.27 0.31 0.27 0.23 0.25 0.28 0.28 0.28 0.23 0.32
0.5m 0.61 0.68 0.62 0.66 0.72 0.70 0.58 0.67 0.60 0.74
0.6m 0.81 0.88 0.82 0.86 0.92 0.90 0.78 0.87 0.80 0.94
0.65m 0.93 1.00 0.94 0.98 1.04 1.02 0.90 0.99 0.92 1.06
0.75m 1.09 1.14 1.19 1.17 1.19 1.18 1.05 1.15 1.07 1.25
0.80m 1.31 1.36 1.41 1.39 1.41 1.40 1.27 1.37 1.29 1.47
0.90m 1.44 1.49 1.54 1.52 1.54 1.53 1.40 1.50 1.42 1.60
1m 1.74 1.78 1.83 1.80 1.94 1.73 1.62 1.78 1.60 1.85

Table 9: Average Stopwatch times at each interval (Deceleration)

Distance (m) TimeAvg (s)

0.25 0.27
0.5 0.66
0.60 0.86
0.65 0.98
0.75 1.15
0.80 1.37
0.90 1.50
1 1.78

We can then represent our data in Table 10 on a graph:

Average Time (s)
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Distance 0.0675 + 0.71x + -0.104x^2 R² = 0.999

Figure 2.7: Average Time vs Distance (Deceleration)
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Now that we have the equation of the line for both accelerating and decelerating motion, we

can compare the coefficients to the equation of motion that the ball follows and we can extract

information about the acceleration ax and initial velocity v0 of the ball. The equation that

corresponds to our balls motion is:

1
2 ax t

2 + v0,x t+ x0 (3)

Which when compared to our two equations of the line:

0.633
2 x2 − 0.418x+ 0.278

−0.104
2 x2 + 0.71x+ 0.0675

Tells us that our value for ax = 1.266ms-2 and − 0.208ms-2 respectively,

and our values for v0,x = −0.418ms-1 and 0.71ms-1 respectively.

We can now get the derivation of our motion equations and graph this new equation with our

previous values. Our equation of motion for acceleration was as follows:

f(x) = 0.633x2 − 0.418x+ 0.278 (4)

Therefore our derivative of f(x) with respect to x would be as follows:

f ′(x) = 1.266x− 0.418 (5)

Graphing our new function using our t values as x we get Fig. 2.8:
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Figure 2.8: Derivation of motion equation (Acceleration)
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Our equation of motion for deceleration was as follows:

f(x) = −0.104x2 + 0.71x+ 0.0675 (6)

Therefore our derivative of f(x) with respect to x would be as follows:

f ′(x) = −0.208x+ 0.71 (7)

Graphing our new function using our t values as x we get Fig. 2.9:
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Figure 2.9: Derivation of motion equation (Deceleration)

We can also calculate an ideal, frictionless acceleration value a using the equation:

±g sinα = a (8)

Where α is equal to the angle our wooden board was tilted at:

(±9.81)(sin(2.44)) = ±0.418

Although this value is similar to our deceleration value (-0.418 ms-2 vs -0.208 ms-2),

The value is extremely dissimilar from our acceleration value (0.418 ms-2 vs 1.266 ms-2).

This could represent that there was something wrong with how we carried out our acceleration

measurements that wasn’t present when measuring our deceleration values.
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3 Discussion

3.1 Friction

The biggest inaccuracy within our experiment is the assumption that no energy is lost due to

the contact the ball is making with the surface it is rolling on, if we were able to completely

remove friction from our experiment it would most likely result in our accuracy increasing.

Although every effort was made to ensure that there was nothing located on the ramp and

track that would interfere with the balls motion unfortunately any microscopic irregularities in

the ball or surface can play a roll in altering the balls motion.

In order to improve our accuracy and reduce friction we would need to incorporate a method

of smoothing down the surface of the ball and track, or reducing the contact between the two.

Two options could be to sand down any wooden surfaces before carrying out the experiment

or introducing a lubricant which can reduce the contact made between the two surfaces,

however both of these methods bring other sources of errors which could affect the results such

as the sanding altering the heigh measurements of the track and the lubricant affecting the

velocity of the ball.

3.2 Values for gravity

Throughout our analysis of the experiment we were unable to determine a consistent value for

gravity, however we were able to work out some values that roughly represent the known value

of 9.81 ms-2. Using our v2 vs h graph (Fig. 2.5) we were able to obtain a value of 6.99 ms-2.

Which we can compare to our known value using the formula:

KnownV alue − Obtained V alue
KnownV alue x 100 (9)

9.81 − 6.99
9.81 x 100 = 28.75%

Therefore our 6.99 ms-2 result is fairly close to the value we expected to obtain from carrying

out this experiment.

3.3 Differences between uniform and non-uniform motion

Although both experiments involved a ball rolling along a straight line across a surface and

visually looked almost identical, as we can see from our results, there is quite a big difference

between what happens to a ball in uniform motion vs non uniform motion.

The most striking difference being the variability in speed, in M1 our ball was moving with a

constant acceleration and therefore our calculations were linear and straightforward, however

when we carried our M2 our ball had a variable speed due to a change in

acceleration/deceleration and therefore made our calculations more complex in nature.
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4 Appendix: Pre-lab Problem

Table 10: Position-time data for the three balls in same reference frame

Time(s) Position Ball 1 (m) Position Ball 2 (m) Position Ball 3 (m)

0 0.4 0.2 2
0.5 0.5 0.36 1.8
1 0.6 0.52 1.6
1.5 0.7 0.68 1.4
2 0.8 0.84 1.2
2.5 0.9 1 1
3 1 1.16 0.8
3.5 1.1 1.32 0.6
4 1.2 1.48 0.4
4.5 1.3 1.64 0.2
5 1.4 1.8 0

We can graph this relationship out using Google Sheets:

Time (s)
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al
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on

 (m
)

0
0

Ball 1 Ball 2 Ball 3

Figure 4.1: Graph of Position vs Time for three separate balls

We can calculate the velocity of each ball using the equation:

V elocity = Distance
T ime (10)

Ball 1 : 1.4−0.4
5−0 = 0.2ms-1

Ball 2 : 1.8−0.2
5−0 = 0.32ms-1
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Ball 3 : 0−2
5−0 = −0.4ms-1

Since we know x and y co-ordinates for each of the balls we can work out the mathematical

equation of each line using the formula:
y2−y1
x2−x1

= m (11)

To find the slope and equation:

y − y1 = m(x− x1) (12)

To find the equation of the line

1.4−0.6
5−1 = 0.2

y − 0.6 = 0.2(x− 1)

Ball 1 : y = 0.2x + 0.4

1.8−0.52
5−1 = 0.32

y − 0.52 = 0.32(x− 1)

Ball 2 : y = 0.32x + 0.2

0−1.6
5−1 = −0.4

y − 1.6 = −0.4(x− 1)

Ball 3 : y = −0.4x + 2

In order to work out mathematically at what point Ball 1 and Ball 3 are at the same position

we must make the equation of Ball 1 and Equation of Ball 3 equal to each other:

0.2x+ 0.4 = −0.4x+ 2

And we end up with the equation

0.6x = 1.6

x = 2.6̇ s

y = 0.93̇m

We can work out the position of ball number 2 by subbing in our x co-ordinate and seeing

what value we get for y:

Ball 2 : y = 0.32(2.6̇) + 0.2

Ball 2 : y = 1.053̇m

It takes 5 seconds for Ball 1 to travel 1 metre of the track.

It takes 5 seconds for Ball 2 to travel 1.6 metres down the track.

It takes 5 seconds for Ball 3 to travel the full 2 metre track

Ball 3 reaches the opposite end of the track first while Ball 1 is 1.4 metres down the track and

Ball 2 is 1.8 metres down the track. 5.625 seconds for Ball 2 to finish 10 seconds for Ball 1 to

finish
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